氟磷掺杂钛合金的微生物学和细胞学评价,一种新型抗菌和骨刺激生物材料,具有在骨科手术中应用的潜力。
Microbiological and Cellular Evaluation of a Fluorine-Phosphorus-Doped Titanium Alloy, a Novel Antibacterial and Osteostimulatory Biomaterial with Potential Applications in Orthopedic Surgery.
机构信息
Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
Joint and Bone Research Unit, IIS-Fundación Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain.
出版信息
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.02271-18. Print 2019 Jan 15.
Joint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both of which are associated with high morbidity and substantial costs for patients and health systems. The development of a biomaterial that is capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. We report antibacterial and osteostimulatory effects in a novel fluorine-phosphorus (F-P)-doped TiO oxide film grown on Ti-6Al-4V alloy with a nanostructure of bottle-shaped nanotubes (bNT) using five bacterial species (, , , , and ) and MCT3T3-E1 osteoblastic cells. The interaction between the bacteria and bNT Ti-6Al-4V was complex, as the adhesion of four bacterial species decreased (two staphylococcus species, , and ), and the viability of staphylococci and also decreased because of the aluminum (Al) released by bNT Ti-6Al-4V. This released Al can be recruited by the bacteria through siderophores and was retained only by the Gram-negative bacteria tested. showed higher adhesion on bNT Ti-6Al-4V than on chemically polished (CP) samples of Ti-6Al-4V alloy and an ability to mobilize Al from bNT Ti-6Al-4V. The cell adhesion and proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 and 168 h, as did the matrix mineralization of these cells and the gene expression levels of three of the most important markers related to bone differentiation. According to our results, the bNT Ti-6Al-4V alloy could have clinical application, preventing infection and stimulating bone growth and thus preventing the two main causes of joint prosthesis failure. This work evaluates F-P-doped bNT Ti-6Al-4V from microbiological and cellular approaches. The bacterial results highlight that the antibacterial ability of bNT Ti-6Al-4V is the result of a combination of antiadhesive and bactericidal effects exerted by Al released from the alloy. The cell results highlight that F-P bNT Ti-6Al-4V alloy increases osseointegration due to modification of the chemical composition of the alloy resulting from P incorporation and not due to the nanostructure, as reported previously. A key finding was the detection of Al release from inside the bNT Ti-6Al-4V nanostructures, a result of the nanostructure growth during the anodizing process that is in part responsible for its bactericidal effect.
关节假体失效主要与无菌性松动和假体关节感染有关,这两种情况都与患者和医疗系统的高发病率和大量费用有关。开发一种既能刺激骨生长又能最小化细菌黏附的生物材料,将降低假体失效的发生率。我们报告了一种新型氟磷(F-P)掺杂 TiO 氧化物薄膜的抗菌和骨刺激作用,该薄膜生长在具有瓶状纳米管(bNT)纳米结构的 Ti-6Al-4V 合金上,使用了五种细菌( 、 、 、 和 )和 MCT3T3-E1 成骨细胞。细菌与 bNT Ti-6Al-4V 的相互作用很复杂,因为四种细菌的黏附减少(两种葡萄球菌属细菌 和 ),葡萄球菌属和 的活力也因 bNT Ti-6Al-4V 释放的铝(Al)而降低。这种释放的 Al 可以通过铁载体被细菌招募,并且仅被测试的革兰氏阴性菌保留。 在 bNT Ti-6Al-4V 上的黏附高于 Ti-6Al-4V 合金的化学抛光(CP)样品,并且能够从 bNT Ti-6Al-4V 中动员 Al。MCT3T3-E1 成骨细胞的细胞黏附和增殖在 48 和 168 小时显著增加,这些细胞的基质矿化和三个与骨分化最相关的标志物的基因表达水平也增加。根据我们的结果,bNT Ti-6Al-4V 合金可能具有临床应用价值,可以预防感染和刺激骨生长,从而防止关节假体失效的两个主要原因。这项工作从微生物学和细胞方法评估了 F-P 掺杂的 bNT Ti-6Al-4V。细菌结果突出表明,bNT Ti-6Al-4V 的抗菌能力是由合金释放的 Al 产生的抗黏附和杀菌作用的结合。细胞结果突出表明,F-P bNT Ti-6Al-4V 合金由于 P 掺入导致合金化学成分的改变而增加了骨整合,而不是由于先前报道的纳米结构。一个关键发现是从 bNT Ti-6Al-4V 纳米结构内部检测到 Al 的释放,这是阳极氧化过程中纳米结构生长的结果,部分原因是其杀菌作用。
相似文献
Colloids Surf B Biointerfaces. 2013-1-5
J Mater Sci Mater Med. 2018-7-20
J Biomed Mater Res B Appl Biomater. 2012-8-22
引用本文的文献
Appl Environ Microbiol. 2024-2-21
Materials (Basel). 2023-2-10
Antibiotics (Basel). 2021-10-19
Clin Microbiol Rev. 2021-6-16
本文引用的文献
Front Microbiol. 2017-8-24
Mater Sci Eng C Mater Biol Appl. 2017-4-1
J Mater Sci Mater Med. 2016-11-28
Nat Rev Microbiol. 2016-8-11
Clin Microbiol Infect. 2016-5-13
Dent Mater. 2015-12