Özdoğan H, Şekerci M, Kaplan A
Biophysics Department, Akdeniz University, Antalya, Turkey.
Physics Department, Süleyman Demirel University, Isparta, Turkey.
Appl Radiat Isot. 2019 Jan;143:6-10. doi: 10.1016/j.apradiso.2018.10.011. Epub 2018 Oct 13.
Scientists have been focused on fusion reactor studies to overcome the increasing energy demand. The materials, which have the potential to be used in fusion reactors must be resistant to the harmful effects of radiation in the manner of material itself. Selection of the appropriate materials to be used in nuclear reactors has a crucial importance to achieve the maximum efficiency and security. Ti, V, Ni and Cu are known as some of the constructional fusion materials. Existence of many knowledge about those materials provides countless advantages to the researchers and one of them is the cross-section, which basically means the probability of a nuclear reaction's occurrence. In addition to the cross-section, there exist some other parameters, which could be pointed as gamma strength function and level density models that affect the theoretical calculations. In this study, photon induced reaction cross-sections of Ti, V, Ni and Cu target isotopes have been calculated by using TALYS 1.8 code with different gamma strength functions in the giant dipole resonance region. For gamma strength functions Kopecky-Uhl generalised Lorentzian Model, Brink-Axel Lorentzian Model, Hartree-Fock BCS tables, Hartree-Fock-Bogolyubov tables and Goriely's Hybrid Model have been employed. To appoint the best gamma strength function model, the relative variance calculations have been performed. Also, reaction cross-sections have been recalculated by using the best gamma strength function models through the different level density options. Constant Temperature Fermi Gas Model, Back Shifted Fermi Gas Model and Generalised Super Fluid Model have been employed for level density calculations. Experimental data for the investigated reactions have been taken from EXFOR library and used for comparisons of the obtained calculation results.
科学家们一直专注于聚变反应堆研究,以满足不断增长的能源需求。有潜力用于聚变反应堆的材料必须自身具备抵抗辐射有害影响的能力。选择合适的材料用于核反应堆对于实现最高效率和安全性至关重要。钛(Ti)、钒(V)、镍(Ni)和铜(Cu)是一些已知的聚变反应堆结构材料。关于这些材料的大量知识为研究人员提供了无数优势,其中之一就是截面,它基本上意味着核反应发生的概率。除了截面之外,还存在一些其他参数,例如伽马强度函数和能级密度模型,它们会影响理论计算。在本研究中,利用TALYS 1.8代码,在巨偶极共振区域使用不同的伽马强度函数,计算了钛、钒、镍和铜靶同位素的光子诱发反应截面。对于伽马强度函数,采用了科佩茨基 - 乌尔广义洛伦兹模型、布林克 - 阿克塞尔洛伦兹模型、哈特里 - 福克 - BCS表、哈特里 - 福克 - 博戈留波夫表和戈里利混合模型。为了确定最佳的伽马强度函数模型,进行了相对方差计算。此外,通过不同的能级密度选项,使用最佳伽马强度函数模型重新计算了反应截面。在能级密度计算中采用了恒温费米气体模型、后移费米气体模型和广义超流体模型。所研究反应的实验数据取自EXFOR库,并用于比较所得的计算结果。