Davies K J, Delsignore M E
J Biol Chem. 1987 Jul 15;262(20):9908-13.
Proteins which have been exposed to the hydroxyl radical (.OH) or to the combination of .OH plus the superoxide anion radical and oxygen (.OH + O2- + O2) exhibit altered primary structure and increased proteolytic susceptibility. The present work reveals that alterations to primary structure result in gross distortions of secondary and tertiary structure. Denaturation/increased hydrophobicity of bovine serum albumin (BSA) by .OH, or by .OH + O2- + O2 was maximal at a radical/BSA molar ratio of 24 (all .OH or 50% .OH + 50% O2-). BSA exposed to .OH also underwent progressive covalent cross-linking to form dimers, trimers, and tetramers, partially due to the formation of intermolecular bityrosine. In contrast, .OH + O2- + O2 caused spontaneous BSA fragmentation. Fragmentation of BSA produced new carbonyl groups with no apparent increase in free amino groups. Fragmentation may involve reaction of (.OH-induced) alpha-carbon radicals with O2 to form peroxyl radicals which decompose to fragment the polypeptide chain at the alpha-carbon, rather than at peptide bonds. BSA fragments induced by .OH + O2- + O2 exhibited molecular weights of 7,000-60,000 following electrophoresis under denaturing conditions, but could be visualized as hydrophobic aggregates in nondenaturing gels (confirmed with [3H]BSA following treatment with urea or acid). Combinations of various chemical radical scavengers (mannitol, urate, t-butyl alcohol, isopropyl alcohol) and gases (N2O, O2, N2) revealed that .OH is the primary species responsible for alteration of BSA secondary and tertiary structure. Oxygen, and O2- serve only to modify the outcome of .OH reaction. Furthermore, direct studies of O2- + O2 (in the absence of .OH) revealed no measurable changes in BSA structure. The process of denaturation/increased hydrophobicity was found to precede either covalent cross-linking (by .OH) or fragmentation (by .OH + O2- + O2). Denaturation was half-maximal at a radical/BSA molar ratio of 9.6, whereas half-maximal aggregation or fragmentation occurred at a ratio of 19.4. Denaturation/hydrophobicity may hold important clues for the mechanism(s) by which oxygen radicals can increase proteolytic susceptibility.
暴露于羟基自由基(·OH)或羟基自由基与超氧阴离子自由基及氧气的组合(·OH + O₂⁻ + O₂)的蛋白质,其一级结构会发生改变,对蛋白水解的敏感性也会增加。目前的研究表明,一级结构的改变会导致二级和三级结构严重扭曲。羟基自由基(·OH)或羟基自由基与超氧阴离子自由基及氧气的组合(·OH + O₂⁻ + O₂)使牛血清白蛋白(BSA)变性/增加疏水性,在自由基/BSA摩尔比为24(全部为·OH或50%·OH + 50% O₂⁻)时达到最大值。暴露于羟基自由基(·OH)的BSA还会进行性地发生共价交联,形成二聚体、三聚体和四聚体,部分原因是分子间双酪氨酸的形成。相比之下,·OH + O₂⁻ + O₂会导致BSA自发断裂。BSA的断裂产生了新的羰基,游离氨基没有明显增加。断裂可能涉及(·OH诱导的)α-碳自由基与O₂反应形成过氧自由基,过氧自由基分解使多肽链在α-碳处而非肽键处断裂。在变性条件下电泳后,·OH + O₂⁻ + O₂诱导产生的BSA片段分子量为7000 - 60000,但在非变性凝胶中可被视为疏水聚集体(用尿素或酸处理后的[³H]BSA证实)。各种化学自由基清除剂(甘露醇、尿酸盐、叔丁醇、异丙醇)和气体(N₂O、O₂、N₂)的组合表明,羟基自由基(·OH)是导致BSA二级和三级结构改变的主要因素。氧气和O₂⁻仅用于改变·OH反应的结果。此外,对O₂⁻ + O₂(在无·OH的情况下)的直接研究表明,BSA结构没有可测量的变化。发现变性/增加疏水性的过程先于共价交联(由·OH引起)或断裂(由·OH + O₂⁻ + O₂引起)。在自由基/BSA摩尔比为9.6时,变性达到最大值的一半,而在该比例为19.4时,聚集或断裂达到最大值的一半。变性/疏水性可能为氧自由基增加蛋白水解敏感性的机制提供重要线索。