Suppr超能文献

使用环境二氧化碳固定来生长、增强和自我修复的聚甲基丙烯酰胺和碳复合材料。

Polymethacrylamide and Carbon Composites that Grow, Strengthen, and Self-Repair using Ambient Carbon Dioxide Fixation.

机构信息

Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92507, USA.

出版信息

Adv Mater. 2018 Nov;30(46):e1804037. doi: 10.1002/adma.201804037. Epub 2018 Oct 9.

Abstract

Plants accumulate solid carbon mass and self-repair using atmospheric CO fixation from photosynthesis. Synthetic materials capable of mimicking this property can significantly reduce the energy needed to transport and repair construction materials. Here, a gel matrix containing aminopropyl methacrylamide (APMA), glucose oxidase (GOx), and nanoceria-stabilized extracted chloroplasts that is able to grow, strengthen, and self-repair using carbon fixation is demonstrated. Glucose produced from the embedded chloroplasts is converted to gluconolactone (GL) via GOx, polymerizing with APMA to form a continuously expanding and strengthening polymethacrylamide. The extracted spinach chloroplasts exhibit enhanced stability and produce 12 µg GL mg Chl h after optimization of the temporal illumination conditions and the glucose efflux rate, with the insertion of chemoprotective nanoceria inside the chloroplasts. This system achieves an average growth rate of 60 µm h per chloroplast under ambient CO and illumination over 18 h, thickening with a shear modulus of 3 kPa. This material can demonstrate self-repair using the exported glucose from chloroplasts and chemical crosslinking through the fissures. These results point to a new class of materials capable of using atmospheric CO fixation as a regeneration source, finding utility as self-healing coatings, construction materials, and fabrics.

摘要

植物通过光合作用从大气 CO 固定中积累固体碳质量并自我修复。能够模拟这种特性的合成材料可以显著降低运输和修复建筑材料所需的能量。在这里,展示了一种包含氨丙基甲基丙烯酰胺 (APMA)、葡萄糖氧化酶 (GOx) 和纳米氧化铈稳定的提取叶绿体的凝胶基质,该基质能够利用碳固定来生长、增强和自我修复。嵌入的叶绿体产生的葡萄糖通过 GOx 转化为葡萄糖酸内酯 (GL),与 APMA 聚合形成不断扩展和增强的聚甲基丙烯酰胺。经过优化时间光照条件和葡萄糖流出率,以及在叶绿体内部插入化学保护纳米氧化铈后,提取的菠菜叶绿体表现出增强的稳定性,产生 12 µg GL mg Chl h,在环境 CO 和光照下超过 18 小时。该系统在环境 CO 和光照下,每个叶绿体的平均生长速率为 60 µm h,厚度为 3 kPa。这种材料可以利用从叶绿体中输出的葡萄糖和通过裂缝进行化学交联来实现自我修复。这些结果表明了一类新的材料,它们能够利用大气 CO 固定作为再生源,可用于自修复涂层、建筑材料和织物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验