Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
Sci Adv. 2020 Jan 17;6(3):eaax8582. doi: 10.1126/sciadv.aax8582. eCollection 2020 Jan.
This work establishes a means to exploit genetic networks to create living synthetic composites that change shape in response to specific biochemical or physical stimuli. Baker's yeast embedded in a hydrogel forms a responsive material where cellular proliferation leads to a controllable increase in the composite volume of up to 400%. Genetic manipulation of the yeast enables composites where volume change on exposure to l-histidine is 14× higher than volume change when exposed to d-histidine or other amino acids. By encoding an optogenetic switch into the yeast, spatiotemporally controlled shape change is induced with pulses of dim blue light (2.7 mW/cm). These living, shape-changing materials may enable sensors or medical devices that respond to highly specific cues found within a biological milieu.
这项工作建立了一种利用遗传网络来创造活体合成复合材料的方法,这些复合材料可以响应特定的生化或物理刺激而改变形状。将贝克氏酵母嵌入水凝胶中,形成一种响应性材料,其中细胞增殖会导致复合材料体积可控地增加高达 400%。通过对酵母进行遗传操作,可以制造出这样的复合材料,即当暴露于 l-组氨酸时,其体积变化是暴露于 d-组氨酸或其他氨基酸时的 14 倍。通过将光遗传学开关编码到酵母中,可以用 2.7 mW/cm 的弱蓝光脉冲诱导时空控制的形状变化。这些活体、形状变化的材料可以使传感器或医疗设备对生物环境中存在的高度特定的线索做出响应。