Suppr超能文献

基于数据驱动的阿尔茨海默病 Tau-PET 成像生物标志物方法。

Data-driven approaches for tau-PET imaging biomarkers in Alzheimer's disease.

机构信息

Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Alzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands.

出版信息

Hum Brain Mapp. 2019 Feb 1;40(2):638-651. doi: 10.1002/hbm.24401. Epub 2018 Oct 19.

Abstract

Previous positron emission tomography (PET) studies have quantified filamentous tau pathology using regions-of-interest (ROIs) based on observations of the topographical distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches may not take full advantage of information contained in neuroimaging data. The present study employs an unsupervised data-driven method to identify spatial patterns of tau-PET distribution, and to compare these patterns to previously published "pathology-driven" ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 normal controls and patients with mild cognitive impairment or Alzheimer's disease (AD) dementia from the Swedish BioFINDER cohort, who underwent [ F]AV1451 PET scanning. Associations with cognition were tested in a separate sample of 90 individuals from ADNI. BioFINDER [ F]AV1451 images were entered into a robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [ F]AV1451 uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was extracted from ADNI [ F]AV1451 scans. We performed linear models comparing [ F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex, and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selection routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and education, which together explained 28% of the variance of a global cognitive composite score. Our findings suggest that [ F]AV1451-PET data naturally clusters into spatial patterns that are biologically meaningful and that may offer advantages as clinical tools.

摘要

先前的正电子发射断层扫描 (PET) 研究使用基于神经纤维缠结的地形分布观察的感兴趣区域 (ROI) 来量化丝状 tau 病理学。然而,这种方法可能无法充分利用神经影像学数据中包含的信息。本研究采用无监督的数据驱动方法来识别 tau-PET 分布的空间模式,并将这些模式与先前发表的“病理学驱动”ROI 进行比较。tau-PET 模式是从由 123 名正常对照者和轻度认知障碍或阿尔茨海默病 (AD) 痴呆患者组成的发现样本中确定的,这些患者来自瑞典 BioFINDER 队列,并接受了 [ F]AV1451 PET 扫描。在 ADNI 的 90 名个体的独立样本中测试了与认知的关联。BioFINDER [ F]AV1451 图像被输入到稳健的体素稳定聚类算法中,该算法产生了 5 个聚类。从 ADNI [ F]AV1451 扫描中提取了数据驱动聚类和 35 个先前发表的病理学驱动 ROI 中的平均 [ F]AV1451 摄取量。我们对所有 40 个 ROI 之间的 [ F]AV1451 信号进行线性模型比较,以测试整体认知和情景记忆,调整年龄、性别和教育。两个数据驱动的 ROI 在所有认知测试中始终表现出最强或接近最强的效应量。将所有区域和人口统计学数据输入特征选择例程,结果选择了两个 ROI(一个数据驱动,一个病理学驱动)和教育,它们共同解释了全球认知综合评分变异的 28%。我们的研究结果表明,[ F]AV1451-PET 数据自然聚类为具有生物学意义的空间模式,并且可能作为临床工具具有优势。

相似文献

引用本文的文献

本文引用的文献

4
In vivo staging of regional amyloid deposition.区域淀粉样蛋白沉积的体内分期
Neurology. 2017 Nov 14;89(20):2031-2038. doi: 10.1212/WNL.0000000000004643. Epub 2017 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验