Suppr超能文献

免疫正电子发射断层扫描在抗体药物偶联物研发中的应用

Application of Immuno-PET in Antibody-Drug Conjugate Development.

作者信息

Carmon Kendra S, Azhdarinia Ali

机构信息

1 Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Mol Imaging. 2018 Jan-Dec;17:1536012118801223. doi: 10.1177/1536012118801223.

Abstract

Targeted therapies hold great promise for cancer treatment and may exhibit even greater efficacy when combined with patient selection tools. The clinical impact of identifying likely responders includes reducing the number of unnecessary and ineffective therapies as well as more accurately determining drug effects. Positron emission tomography (PET) imaging using zirconium-89 radiolabeled monoclonal antibodies (mAbs), also referred to as zirconium-89 (Zr)-immuno-PET, provides a potential biomarker to measure target expression and verify optimal delivery of targeted agents to tumors. Antibody-drug conjugates (ADCs) combine the high affinity and specificity of mAbs with the potency of cytotoxic drugs to target tumor-expressing antigen and destroy cancer cells. Thus, Zr-immuno-PET of whole-body biodistribution, pharmacokinetics, and tumor targeting of antibodies and ADCs to predict toxicity and efficacy could help guide individualized treatment. Here, we review how Zr-immuno-PET is being used as a companion diagnostic with the development of ADCs. Furthermore, we discuss how Zr-immuno-PET may be utilized in future clinical trials as an adjunct tool with novel ADCs to select cancer patients who have the greatest potential to benefit from treatment and improve ADC dosing regimens.

摘要

靶向治疗在癌症治疗方面具有巨大潜力,与患者选择工具联合使用时可能会展现出更高的疗效。识别可能的反应者的临床意义包括减少不必要和无效治疗的数量,以及更准确地确定药物效果。使用锆 - 89放射性标记单克隆抗体(mAb)的正电子发射断层扫描(PET)成像,也称为锆 - 89(Zr)免疫PET,提供了一种潜在的生物标志物,可用于测量靶标表达并验证靶向药物向肿瘤的最佳递送。抗体药物偶联物(ADC)将单克隆抗体的高亲和力和特异性与细胞毒性药物的效力相结合,以靶向肿瘤表达抗原并破坏癌细胞。因此,通过Zr免疫PET对抗体和ADC的全身生物分布、药代动力学和肿瘤靶向进行评估以预测毒性和疗效,有助于指导个体化治疗。在此,我们综述Zr免疫PET如何作为伴随诊断方法用于ADC的研发。此外,我们还讨论了Zr免疫PET在未来临床试验中如何作为辅助工具与新型ADC联合使用,以选择最有可能从治疗中获益的癌症患者并优化ADC给药方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d59/6207972/e379a3d0204f/10.1177_1536012118801223-fig2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验