Peng Jiangtao, Li Luoqing, Tang Yuan Yan
IEEE Trans Neural Netw Learn Syst. 2019 Jun;30(6):1790-1802. doi: 10.1109/TNNLS.2018.2874432. Epub 2018 Oct 29.
A joint sparse representation (JSR) method has shown superior performance for the classification of hyperspectral images (HSIs). However, it is prone to be affected by outliers in the HSI spatial neighborhood. In order to improve the robustness of JSR, we propose a maximum likelihood estimation (MLE)-based JSR (MLEJSR) model, which replaces the traditional quadratic loss function with an MLE-like estimator for measuring the joint approximation error. The MLE-like estimator is actually a function of coding residuals. Given some priors on the coding residuals, the MLEJSR model can be easily converted to an iteratively reweighted JSR problem. Choosing a reasonable weight function, the effect of inhomogeneous neighboring pixels or outliers can be dramatically reduced. We provide a theoretical analysis of MLEJSR from the viewpoint of recovery error and evaluate its empirical performance on three public hyperspectral data sets. Both the theoretical and experimental results demonstrate the effectiveness of our proposed MLEJSR method, especially in the case of large noise.
一种联合稀疏表示(JSR)方法在高光谱图像(HSI)分类方面表现出卓越性能。然而,它容易受到HSI空间邻域中异常值的影响。为了提高JSR的鲁棒性,我们提出了一种基于最大似然估计(MLE)的JSR(MLEJSR)模型,该模型用一种类似MLE的估计器取代传统的二次损失函数来衡量联合逼近误差。这种类似MLE的估计器实际上是编码残差的函数。给定编码残差的一些先验信息,MLEJSR模型可以很容易地转换为一个迭代加权的JSR问题。选择合理的权重函数,可以显著降低不均匀相邻像素或异常值的影响。我们从恢复误差的角度对MLEJSR进行了理论分析,并在三个公开的高光谱数据集上评估了其经验性能。理论和实验结果均证明了我们提出的MLEJSR方法的有效性,尤其是在噪声较大的情况下。