Suppr超能文献

基于多任务联合稀疏表示和逐步 MRF 优化的高光谱图像分类。

Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization.

出版信息

IEEE Trans Cybern. 2016 Dec;46(12):2966-2977. doi: 10.1109/TCYB.2015.2484324. Epub 2015 Oct 15.

Abstract

Hyperspectral image (HSI) classification is a crucial issue in remote sensing. Accurate classification benefits a large number of applications such as land use analysis and marine resource utilization. But high data correlation brings difficulty to reliable classification, especially for HSI with abundant spectral information. Furthermore, the traditional methods often fail to well consider the spatial coherency of HSI that also limits the classification performance. To address these inherent obstacles, a novel spectral-spatial classification scheme is proposed in this paper. The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework, which are claimed to be two main contributions in this procedure. First, the MJSR not only reduces the spectral redundancy, but also retains necessary correlation in spectral field during classification. Second, the stepwise optimization further explores the spatial correlation that significantly enhances the classification accuracy and robustness. As far as several universal quality evaluation indexes are concerned, the experimental results on Indian Pines and Pavia University demonstrate the superiority of our method compared with the state-of-the-art competitors.

摘要

高光谱图像 (HSI) 分类是遥感领域的一个关键问题。准确的分类有助于许多应用,如土地利用分析和海洋资源利用。但是,高数据相关性给可靠的分类带来了困难,尤其是对于具有丰富光谱信息的 HSI。此外,传统方法往往不能很好地考虑 HSI 的空间一致性,这也限制了分类性能。为了解决这些内在的障碍,本文提出了一种新的光谱-空间分类方案。该方法主要集中在多任务联合稀疏表示 (MJSR) 和逐步马尔可夫随机场框架上,这被认为是该过程中的两个主要贡献。首先,MJSR 不仅减少了光谱冗余,而且在分类过程中保留了光谱域中必要的相关性。其次,逐步优化进一步挖掘了空间相关性,显著提高了分类的准确性和鲁棒性。就几个通用的质量评估指标而言,在印第安纳松和帕维亚大学的实验结果表明,与最先进的竞争对手相比,我们的方法具有优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验