Suppr超能文献

通过阴影消除提高 DNA 链置换电路的性能。

Improving the Performance of DNA Strand Displacement Circuits by Shadow Cancellation.

机构信息

Department of Computer Science , Duke University , Durham , North Carolina 27708 , United States.

Wyss Institute, Harvard University , Boston , Massachusetts 02115 , United States.

出版信息

ACS Nano. 2018 Nov 27;12(11):11689-11697. doi: 10.1021/acsnano.8b07394. Epub 2018 Nov 8.

Abstract

DNA strand displacement circuits are powerful tools that can be rationally engineered to implement molecular computing tasks because they are programmable, cheap, robust, and predictable. A key feature of these circuits is the use of catalytic gates to amplify signal. Catalytic gates tend to leak; that is, they generate output signal even in the absence of intended input. Leaks are harmful to the performance and correct operation of DNA strand displacement circuits. Here, we present "shadow cancellation", a general-purpose technique to mitigate leak in catalytic DNA strand displacement circuits. Shadow cancellation involves constructing a parallel shadow circuit that mimics the primary circuit and has the same leak characteristics. It is situated in the same test tube as the primary circuit and produces "anti-background" DNA strands that cancel "background" DNA strands produced by leak. We demonstrate the feasibility and strength of the shadow leak cancellation approach through a challenging test case, a cross-catalytic feedback DNA amplifier circuit that leaks prodigiously. Shadow cancellation dramatically reduced the leak of this circuit and improved the signal-to-background difference by several fold. Unlike existing techniques, it makes no modifications to the underlying amplifier circuit and is agnostic to its leak mechanism. Shadow cancellation also showed good robustness to concentration errors in multiple scenarios. This work introduces a direction in leak reduction techniques for DNA strand displacement amplifier circuits and can potentially be extended to other molecular amplifiers.

摘要

DNA 链置换电路是强大的工具,可以通过合理设计来实现分子计算任务,因为它们具有可编程性、廉价性、鲁棒性和可预测性。这些电路的一个关键特征是使用催化门来放大信号。催化门容易泄漏;也就是说,即使没有预期的输入,它们也会产生输出信号。泄漏对 DNA 链置换电路的性能和正确运行是有害的。在这里,我们提出了“阴影消除”,这是一种通用技术,可以减轻催化 DNA 链置换电路中的泄漏。阴影消除涉及构建一个模拟主电路且具有相同泄漏特性的并行阴影电路。它与主电路位于同一个试管中,并产生“反背景”DNA 链,以消除泄漏产生的“背景”DNA 链。我们通过一个具有挑战性的测试案例,即一个交叉催化反馈 DNA 放大器电路,证明了阴影泄漏消除方法的可行性和优势,该电路泄漏严重。阴影消除显著降低了该电路的泄漏,并将信号与背景的差异提高了数倍。与现有技术不同,它不对基础放大器电路进行任何修改,并且与其泄漏机制无关。在多种情况下,阴影消除对浓度误差也具有很好的鲁棒性。这项工作为 DNA 链置换放大器电路的泄漏减少技术引入了一个方向,并可能扩展到其他分子放大器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验