Song Tianqi, Garg Sudhanshu, Mokhtar Reem, Bui Hieu, Reif John
Department of Computer Science, Duke University , Durham, North Carolina 27708, United States.
ACS Synth Biol. 2018 Jan 19;7(1):46-53. doi: 10.1021/acssynbio.6b00390. Epub 2017 Dec 20.
A main goal in DNA computing is to build DNA circuits to compute designated functions using a minimal number of DNA strands. Here, we propose a novel architecture to build compact DNA strand displacement circuits to compute a broad scope of functions in an analog fashion. A circuit by this architecture is composed of three autocatalytic amplifiers, and the amplifiers interact to perform computation. We show DNA circuits to compute functions sqrt(x), ln(x) and exp(x) for x in tunable ranges with simulation results. A key innovation in our architecture, inspired by Napier's use of logarithm transforms to compute square roots on a slide rule, is to make use of autocatalytic amplifiers to do logarithmic and exponential transforms in concentration and time. In particular, we convert from the input that is encoded by the initial concentration of the input DNA strand, to time, and then back again to the output encoded by the concentration of the output DNA strand at equilibrium. This combined use of strand-concentration and time encoding of computational values may have impact on other forms of molecular computation.
DNA计算的一个主要目标是构建DNA电路,以使用最少数量的DNA链来计算指定的函数。在此,我们提出一种新颖的架构,用于构建紧凑的DNA链置换电路,以模拟方式计算广泛的函数。这种架构的电路由三个自催化放大器组成,这些放大器相互作用以执行计算。我们通过模拟结果展示了DNA电路在可调范围内为x计算函数sqrt(x)、ln(x)和exp(x)。我们架构中的一个关键创新,灵感来自于纳皮尔在计算尺上使用对数变换来计算平方根,即利用自催化放大器在浓度和时间上进行对数和指数变换。具体而言,我们从由输入DNA链的初始浓度编码的输入,转换为时间,然后再转换回由平衡时输出DNA链的浓度编码的输出。这种对计算值的链浓度和时间编码的联合使用可能会对其他形式的分子计算产生影响。