Cooke James R H, Selen Luc P J, van Beers Robert J, Medendorp W Pieter
Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.
Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
J Vis. 2018 Aug 1;18(8):12. doi: 10.1167/18.8.12.
Comparing models facilitates testing different hypotheses regarding the computational basis of perception and action. Effective model comparison requires stimuli for which models make different predictions. Typically, experiments use a predetermined set of stimuli or sample stimuli randomly. Both methods have limitations; a predetermined set may not contain stimuli that dissociate the models, whereas random sampling may be inefficient. To overcome these limitations, we expanded the psi-algorithm (Kontsevich & Tyler, 1999) from estimating the parameters of a psychometric curve to distinguishing models. To test our algorithm, we applied it to two distinct problems. First, we investigated dissociating sensory noise models. We simulated ideal observers with different noise models performing a two-alternative forced-choice task. Stimuli were selected randomly or using our algorithm. We found using our algorithm improved the accuracy of model comparison. We also validated the algorithm in subjects by inferring which noise model underlies speed perception. Our algorithm converged quickly to the model previously proposed (Stocker & Simoncelli, 2006), whereas if stimuli were selected randomly, model probabilities separated slower and sometimes supported alternative models. Second, we applied our algorithm to a different problem-comparing models of target selection under body acceleration. Previous work found target choice preference is modulated by whole body acceleration (Rincon-Gonzalez et al., 2016). However, the effect is subtle, making model comparison difficult. We show that selecting stimuli adaptively could have led to stronger conclusions in model comparison. We conclude that our technique is more efficient and more reliable than current methods of stimulus selection for dissociating models.
比较模型有助于检验关于感知和行动计算基础的不同假设。有效的模型比较需要模型做出不同预测的刺激。通常,实验使用一组预先确定的刺激或随机抽样刺激。这两种方法都有局限性;预先确定的一组刺激可能不包含能区分模型的刺激,而随机抽样可能效率低下。为了克服这些局限性,我们将psi算法(Kontsevich & Tyler,1999)从估计心理测量曲线的参数扩展到区分模型。为了测试我们的算法,我们将其应用于两个不同的问题。首先,我们研究区分感觉噪声模型。我们模拟了具有不同噪声模型的理想观察者执行二选一强制选择任务。刺激是随机选择的或使用我们的算法选择的。我们发现使用我们的算法提高了模型比较的准确性。我们还通过推断速度感知背后的噪声模型在受试者中验证了该算法。我们的算法很快收敛到先前提出的模型(Stocker & Simoncelli,2006),而如果随机选择刺激,模型概率分离得较慢,有时支持替代模型。其次,我们将我们的算法应用于一个不同的问题——比较身体加速下的目标选择模型。先前的工作发现目标选择偏好受全身加速调节(Rincon-Gonzalez等人,2016)。然而,这种影响很微妙,使得模型比较困难。我们表明,自适应地选择刺激可能会在模型比较中得出更强有力的结论。我们得出结论,对于区分模型,我们的技术比当前的刺激选择方法更有效、更可靠。