Lesmes Luis Andres, Jeon Seong-Taek, Lu Zhong-Lin, Dosher Barbara Anne
Vision Center Laboratory (VCL), Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Vision Res. 2006 Oct;46(19):3160-76. doi: 10.1016/j.visres.2006.04.022. Epub 2006 Jun 19.
External noise paradigms, measuring contrast threshold as a function of external noise contrast (the "TvC" function), provide a valuable tool for studying perceptual mechanisms. However, measuring TvC functions at the multiple performance criteria needed to constrain observer models has previously involved demanding data collection (often>2000 trials). To ease this task, we developed a novel Bayesian adaptive procedure, the "quick TvC" or "qTvC" method, to rapidly estimate multiple TvC functions, by adapting a strategy originally developed to estimate psychometric threshold and slope [Cobo-Lewis, A. B. (1996). An adaptive method for estimating multiple parameters of a psychometric function. Journal of Mathematical Psychology, 40, 353-354; Kontsevich, L. L., and Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39(16), 2729-2737]. Exploiting the regularities observed in empirical TvC functions, the qTvC method estimates three parameters: the optimal threshold c(0), the critical noise level N(c), and the common slope, eta, of log-parallel psychometric functions across external noise conditions. Before each trial, the qTvC uses a one-step-ahead search to select the stimulus (jointly defined by signal and noise contrast) that minimizes the expected entropy of the three-dimensional posterior probability distribution, p(N(c),c(0),eta). The method's accuracy and precision, for estimating TvC functions at three performance criteria (65%, 79%, and 92% correct), were evaluated using Monte-Carlo simulations and a psychophysical task. Simulations showed that less than 300 trials were needed to estimate TvC functions at three widely separated criteria with good accuracy (bias<5%) and precision (mean root mean square error <1.5 dB). Using an orientation identification task, we found excellent agreement (weighted r(2)>.95) between TvC estimates obtained with the qTvC and the method of constant stimuli, although the qTvC used only 12% of the data collection (240 vs 1920 trials). The qTvC may hold considerable practical value for applying the external noise method to study mechanisms of observer state changes and special populations. We suggest that the same adaptive strategy can be applied to directly estimate other classical functions, such as the contrast sensitivity function, elliptical equi-discrimination contours, and sensory memory decay functions.
外部噪声范式通过测量作为外部噪声对比度函数的对比度阈值(“TvC”函数),为研究感知机制提供了一种有价值的工具。然而,在多个性能标准下测量TvC函数以约束观察者模型,此前涉及要求苛刻的数据收集(通常>2000次试验)。为了简化这项任务,我们开发了一种新颖的贝叶斯自适应程序,即“快速TvC”或“qTvC”方法,通过采用最初为估计心理测量阈值和斜率而开发的策略来快速估计多个TvC函数[科博 - 刘易斯,A. B.(1996年)。一种估计心理测量函数多个参数的自适应方法。《数学心理学杂志》,40,353 - 354;孔采维奇,L. L.,和泰勒,C. W.(1999年)。心理测量斜率和阈值的贝叶斯自适应估计。《视觉研究》,39(16),2729 - 2737]。利用在经验性TvC函数中观察到的规律,qTvC方法估计三个参数:最优阈值c(0)、临界噪声水平N(c)以及跨外部噪声条件的对数平行心理测量函数的共同斜率eta。在每次试验之前,qTvC使用一步前瞻搜索来选择刺激(由信号和噪声对比度共同定义),该刺激能使三维后验概率分布p(N(c),c(0),eta)的预期熵最小化。使用蒙特卡罗模拟和一项心理物理学任务评估了该方法在三个性能标准(65%、79%和92%正确)下估计TvC函数的准确性和精度。模拟表明,在三个广泛分离的标准下估计TvC函数,以良好的准确性(偏差<5%)和精度(均方根误差<1.5 dB),所需试验次数少于300次。使用方向识别任务,我们发现qTvC获得的TvC估计值与恒定刺激法之间具有极好的一致性(加权r(2)>.95),尽管qTvC仅使用了12%的数据收集量(240次试验对1920次试验)。qTvC在将外部噪声方法应用于研究观察者状态变化机制和特殊人群方面可能具有相当大的实用价值。我们建议可以应用相同的自适应策略直接估计其他经典函数,如对比度敏感函数、椭圆等辨别轮廓和感觉记忆衰减函数。