Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA.
Epigenetics Chromatin. 2018 Oct 29;11(1):64. doi: 10.1186/s13072-018-0233-x.
Meiotic recombination hotspots control the frequency and distribution of Spo11 (Rec12)-initiated recombination in the genome. Recombination occurs within and is regulated in part by chromatin structure, but relatively few of the many chromatin remodeling factors and histone posttranslational modifications (PTMs) have been interrogated for a role in the process.
We developed a chromatin affinity purification and mass spectrometry-based approach to identify proteins and histone PTMs that regulate recombination hotspots. Small (4.2 kbp) minichromosomes (MiniCs) bearing the fission yeast ade6-M26 hotspot or a basal recombination control were purified approximately 100,000-fold under native conditions from meiosis; then, associated proteins and histone PTMs were identified by mass spectrometry. Proteins and PTMs enriched at the hotspot included known regulators (Atf1, Pcr1, Mst2, Snf22, H3K14ac), validating the approach. The abundance of individual histones varied dynamically during meiotic progression in hotspot versus basal control MiniCs, as did a subset of 34 different histone PTMs, implicating these as potential regulators. Measurements of basal and hotspot recombination in null mutants confirmed that additional, hotspot-enriched proteins are bona fide regulators of hotspot activation within the genome. These chromatin-mediated regulators include histone H2A-H2B and H3-H4 chaperones (Nap1, Hip1/Hir1), subunits of the Ino80 complex (Arp5, Arp8), a DNA helicase/E3 ubiquitin ligase (Rrp2), components of a Swi2/Snf2 family remodeling complex (Swr1, Swc2), and a nucleosome evictor (Fft3/Fun30).
Overall, our findings indicate that a remarkably diverse collection of chromatin remodeling factors and histone PTMs participate in designating where meiotic recombination occurs in the genome, and they provide new insight into molecular mechanisms of the process.
减数分裂重组热点控制着 Spo11(Rec12)引发的重组在基因组中的频率和分布。重组发生在染色体内,部分受染色质结构调控,但在许多染色质重塑因子和组蛋白翻译后修饰(PTM)中,只有相对较少的因子被研究过其在该过程中的作用。
我们开发了一种基于染色质亲和纯化和质谱的方法,以鉴定调控重组热点的蛋白质和组蛋白 PTM。在天然条件下,从减数分裂中大约纯化了携带裂殖酵母 ade6-M26 热点或基本重组对照的小(4.2kbp)微型染色体(MiniCs)100,000 倍;然后,通过质谱鉴定相关蛋白和组蛋白 PTM。在热点处富集的蛋白质包括已知的调控因子(Atf1、Pcr1、Mst2、Snf22、H3K14ac),验证了该方法的有效性。在 MiniCs 中,与基本对照相比,单个组蛋白在减数分裂进程中的丰度动态变化,以及 34 种不同组蛋白 PTM 的子集也发生了变化,暗示它们可能是潜在的调控因子。在缺失突变体中测量基础和热点重组证实,额外的、热点富集的蛋白质是基因组中热点激活的真正调控因子。这些染色质介导的调控因子包括组蛋白 H2A-H2B 和 H3-H4 伴侣(Nap1、Hip1/Hir1)、Ino80 复合物的亚基(Arp5、Arp8)、DNA 解旋酶/E3 泛素连接酶(Rrp2)、Swi2/Snf2 家族重塑复合物的成分(Swr1、Swc2)和核小体驱逐因子(Fft3/Fun30)。
总的来说,我们的研究结果表明,一组非常多样化的染色质重塑因子和组蛋白 PTM 参与了指定减数分裂重组在基因组中发生的位置,为该过程的分子机制提供了新的见解。