Suppr超能文献

一种新型工程化小蛋白,用于正电子发射断层扫描成像人程序性死亡配体-1:在小鼠模型和人类肿瘤组织中的验证。

A Novel Engineered Small Protein for Positron Emission Tomography Imaging of Human Programmed Death Ligand-1: Validation in Mouse Models and Human Cancer Tissues.

机构信息

Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California.

Department of Neurology and Neurological Sciences, Stanford University, Stanford, California.

出版信息

Clin Cancer Res. 2019 Mar 15;25(6):1774-1785. doi: 10.1158/1078-0432.CCR-18-1871. Epub 2018 Oct 29.

Abstract

PURPOSE

To design and evaluate a small engineered protein binder targeting human programmed death-1 ligand (hPD-L1) for PET imaging in four mouse tumor models, and in human cancer specimens. The hPD-L1 protein binder, FN3, was engineered using a 12-kDa human fibronectin type-3 domain (FN3) scaffold. The binder's affinity was assayed in CT26 mouse colon carcinoma cells stably expressing hPD-L1 (CT26/hPD-L1). Cu-FN3 was assayed for purity, specific activity, and immunoreactivity. Four groups of NSG mice ( = 3-5/group) were imaged with Cu-FN3 PET imaging (1-24 hours postinjection of 3.7 MBq/7 μg of Do-FN3 in 200 μL PBS): Nod SCID Gamma (NSG) mice bearing (i) syngeneic CT26/hPD-L1tumors, (ii) CT26/hPD-L1 tumors blocked (blk) by preinjected nonradioactive FN3 binder, (iii) hPD-L1-negative Raji xenografts, and (iv) MDA-MB-231 xenografts. The FN3 binder staining was evaluated against validated hPD-L1 antibodies by immunostaining in human cancer specimens.

RESULTS

FN3 bound hPD-L1 with 1.4 ± 0.3 nmol/L affinity in CT26/hPD-L1 cells. Cu-FN3 radiotracer showed >70% yield and >95% purity. Cu-FN3 PET imaging of mice bearing CT26/hPD-L1 tumors showed tumor-to-muscle ratios of 5.6 ± 0.9 and 13.1 ± 2.3 at 1 and 4 hours postinjection, respectively. The FN3 binder detected hPD-L1 expression in human tissues with known hPD-L1 expression status based on two validated antibodies.

CONCLUSIONS

The Cu-FN3 radiotracer represents a novel, small, and high-affinity binder for imaging hPD-L1 in tumors. Our data support further exploration and clinical translation of this binder for noninvasive identification of cancer patients who may respond to immune checkpoint blockade therapies.

摘要

目的

设计并评估一种针对人程序性死亡配体 1 (hPD-L1)的小型工程蛋白结合物,用于四种小鼠肿瘤模型和人类癌症标本的 PET 成像。hPD-L1 蛋白结合物 FN3 是使用 12kDa 人纤维连接蛋白型 3 结构域(FN3)支架工程化的。在稳定表达 hPD-L1 的 CT26 小鼠结肠癌细胞(CT26/hPD-L1)中测定结合物的亲和力。测定 Cu-FN3 的纯度、比活度和免疫反应性。将四组 NSG 小鼠(每组 3-5 只)进行 Cu-FN3 PET 成像(在 200μLPBS 中注射 3.7MBq/7μg Do-FN3 后 1-24 小时):(i)携带同源 CT26/hPD-L1 肿瘤的 NSG 小鼠,(ii)用预先注射的非放射性 FN3 结合物阻断的 CT26/hPD-L1 肿瘤(blk),(iii)hPD-L1 阴性 Raji 异种移植物,和(iv)MDA-MB-231 异种移植物。通过免疫组织化学染色,用 FN3 结合物对人类癌症标本中的经证实的 hPD-L1 抗体进行染色。

结果

FN3 与 CT26/hPD-L1 细胞中的 hPD-L1 结合的亲和力为 1.4±0.3nmol/L。Cu-FN3 放射性示踪剂的产率>70%,纯度>95%。在注射后 1 小时和 4 小时,携带 CT26/hPD-L1 肿瘤的小鼠的 Cu-FN3 PET 成像显示肿瘤与肌肉的比值分别为 5.6±0.9 和 13.1±2.3。FN3 结合物根据两种经证实的抗体检测到具有已知 hPD-L1 表达状态的人类组织中的 hPD-L1 表达。

结论

Cu-FN3 放射性示踪剂代表一种新型、小型、高亲和力的结合物,可用于肿瘤 hPD-L1 的成像。我们的数据支持进一步探索和临床转化这种结合物,用于非侵入性识别可能对免疫检查点阻断治疗有反应的癌症患者。

相似文献

3
Practical Immuno-PET Radiotracer Design Considerations for Human Immune Checkpoint Imaging.
J Nucl Med. 2017 Apr;58(4):538-546. doi: 10.2967/jnumed.116.177659. Epub 2016 Dec 15.
5
PD-L1 Detection in Tumors Using [(64)Cu]Atezolizumab with PET.
Bioconjug Chem. 2016 Sep 21;27(9):2103-10. doi: 10.1021/acs.bioconjchem.6b00348. Epub 2016 Aug 9.
6
FN3 linked nanobubbles as a targeted contrast agent for US imaging of cancer-associated human PD-L1.
J Control Release. 2022 Jun;346:317-327. doi: 10.1016/j.jconrel.2022.04.030. Epub 2022 Apr 29.
8
Construction of Anti-hPD-L1 HCAb Nb6 and I Labeling for Noninvasive Detection of PD-L1 Expression in Human Bone Sarcoma.
Bioconjug Chem. 2019 Oct 16;30(10):2614-2623. doi: 10.1021/acs.bioconjchem.9b00539. Epub 2019 Oct 2.
9
A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma.
Clin Cancer Res. 2013 Dec 15;19(24):6820-9. doi: 10.1158/1078-0432.CCR-13-0626. Epub 2013 Oct 4.
10
Evaluation of Cu radiolabeled anti-hPD-L1 Nb6 for positron emission tomography imaging in lung cancer tumor mice model.
Bioorg Med Chem Lett. 2020 Feb 15;30(4):126915. doi: 10.1016/j.bmcl.2019.126915. Epub 2019 Dec 24.

引用本文的文献

3
Cell Model for Testing Pharmaceuticals Targeting Human PD-L1.
Sovrem Tekhnologii Med. 2024;16(5):5-15. doi: 10.17691/stm2024.16.5.01. Epub 2024 Oct 30.
4
Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities.
Front Med (Lausanne). 2024 Jun 7;11:1401515. doi: 10.3389/fmed.2024.1401515. eCollection 2024.
5
Recent Trends and Opportunities for the Targeted Immuno-Nanomaterials for Cancer Theranostics Applications.
Micromachines (Basel). 2022 Dec 14;13(12):2217. doi: 10.3390/mi13122217.
6
Radiopharmaceuticals as Novel Immune System Tracers.
Adv Radiat Oncol. 2022 Jun 18;7(5):100936. doi: 10.1016/j.adro.2022.100936. eCollection 2022 Sep-Oct.
7
Protein scaffolds: antibody alternatives for cancer diagnosis and therapy.
RSC Chem Biol. 2022 May 25;3(7):830-847. doi: 10.1039/d2cb00094f. eCollection 2022 Jul 6.
8
Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis.
Pharmaceuticals (Basel). 2022 Jun 14;15(6):747. doi: 10.3390/ph15060747.
10
Multiparameter Longitudinal Imaging of Immune Cell Activity in Chimeric Antigen Receptor T Cell and Checkpoint Blockade Therapies.
ACS Cent Sci. 2022 May 25;8(5):590-602. doi: 10.1021/acscentsci.2c00142. Epub 2022 May 12.

本文引用的文献

1
A comparative study of PD-L1 immunohistochemical assays with four reliable antibodies in thymic carcinoma.
Oncotarget. 2018 Jan 8;9(6):6993-7009. doi: 10.18632/oncotarget.24075. eCollection 2018 Jan 23.
2
PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer.
Mol Diagn Ther. 2018 Feb;22(1):1-10. doi: 10.1007/s40291-017-0308-6.
3
Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors.
Front Immunol. 2017 Oct 12;8:1287. doi: 10.3389/fimmu.2017.01287. eCollection 2017.
4
Synthesis and Biologic Evaluation of a Novel F-Labeled Adnectin as a PET Radioligand for Imaging PD-L1 Expression.
J Nucl Med. 2018 Mar;59(3):529-535. doi: 10.2967/jnumed.117.199596. Epub 2017 Oct 12.
5
PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome.
Front Pharmacol. 2017 Aug 23;8:561. doi: 10.3389/fphar.2017.00561. eCollection 2017.
6
Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors.
Bioconjug Chem. 2017 Sep 20;28(9):2361-2371. doi: 10.1021/acs.bioconjchem.7b00374. Epub 2017 Sep 12.
7
I-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment.
Clin Cancer Res. 2017 Nov 1;23(21):6616-6628. doi: 10.1158/1078-0432.CCR-17-0310. Epub 2017 Jul 27.
9
Rapid PD-L1 detection in tumors with PET using a highly specific peptide.
Biochem Biophys Res Commun. 2017 Jan 29;483(1):258-263. doi: 10.1016/j.bbrc.2016.12.156. Epub 2016 Dec 24.
10
PD-L1 Detection in Tumors Using [(64)Cu]Atezolizumab with PET.
Bioconjug Chem. 2016 Sep 21;27(9):2103-10. doi: 10.1021/acs.bioconjchem.6b00348. Epub 2016 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验