Suppr超能文献

分层治疗推荐还是一刀切?基于图形探索的卫生经济学见解。

Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration.

机构信息

Unit of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.

出版信息

Eur J Health Econ. 2019 Apr;20(3):475-482. doi: 10.1007/s10198-018-1013-z. Epub 2018 Oct 29.

Abstract

OBJECTIVES

We sought to explore to what extent the use of Subpopulation Treatment Effect Pattern Plot (STEPP) may help to identify efficient treatment allocation strategy.

METHODS

The analysis was based on data from the COACH study, in which 1023 patients with heart failure were randomly assigned to three treatments: care-as-usual, basic support, and intensive support. First, using predicted 18-month mortality risk as the stratification basis, a suitable strategy for assigning different treatments to different risk groups of patients was developed. To that end, a graphical exploration of the difference in net monetary benefit (NMB) across treatment regimens and baseline risk was used. Next, the efficiency gains resulting from this proposed subgroup strategy were quantified by computing the difference in NMB between our stratified approach and the best performing population-wide strategy.

RESULTS

The analysis using STEPPs suggested that a differentiated approach, based on offering intensive support to low-risk patients (18-month mortality risk ≤ 0.16) and basic support to intermediate- to high-risk patients (18-month mortality risk > 0.16) would be an economically efficient treatment allocation strategy. This was confirmed in the subsequent cost-effectiveness analysis, where the average gain in NMB resulting from the proposed stratified approach compared to basic support for all was found to be €1312 (95% CI €390-€2346) per patient.

CONCLUSIONS

STEPP provides a systematic approach to assess the interaction between baseline risk and the difference in NMB between competing interventions and to identify cutoffs to stratify patients in a health economically optimal manner.

摘要

目的

我们旨在探讨亚组治疗效应模式图(STEPP)的应用在多大程度上有助于确定有效的治疗分配策略。

方法

本分析基于 COACH 研究的数据,该研究纳入了 1023 例心力衰竭患者,随机分为三组:常规治疗、基础支持和强化支持。首先,以预测的 18 个月死亡率风险作为分层依据,制定了为不同风险组患者分配不同治疗方案的适宜策略。为此,采用治疗方案与基线风险之间净货币收益(NMB)差异的图形探索方法。接下来,通过计算分层方法与全人群最佳治疗方案之间的 NMB 差异,量化这种亚组策略带来的效率收益。

结果

STEPP 分析提示,基于为低危患者(18 个月死亡率风险≤0.16)提供强化支持、为中高危患者(18 个月死亡率风险>0.16)提供基础支持的差异化方法是一种经济有效的治疗分配策略。后续的成本效益分析证实了这一点,与基础支持相比,分层方法平均可使每位患者的 NMB 增加 1312 欧元(95%CI:390-2346 欧元)。

结论

STEPP 提供了一种系统的方法,用于评估基线风险与竞争干预措施之间 NMB 差异之间的相互作用,并确定以经济优化的方式对患者进行分层的截止值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1425/6439216/0609b314590e/10198_2018_1013_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验