Suppr超能文献

以剑麻纤维为碳基质,通过原位合成开式中空管状 MnO/C,制备高性能锂离子电池阳极材料。

In situ synthesis of open hollow tubular MnO/C with high performance anode materials for lithium ion batteries using kapok fiber as carbon matrix.

机构信息

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.

出版信息

Nanotechnology. 2019 Jan 4;30(1):015403. doi: 10.1088/1361-6528/aae69e. Epub 2018 Oct 30.

Abstract

MnO/C materials with a long lifetime and high rate performance via a biomass template strategy for the lithium ion battery (LIB) market are indispensable. Therefore, novel and efficient ways for their synthesis are urgently required to greatly alleviate the pressure of consuming nonrenewable resources. Herein, we fabricate an open hollow tubular MnO/C hybrid based on the transformation of a natural kapok fiber by hydrothermal and thermal treatment. The as-prepared hybrid material was obtained with high synthesis efficiency and exhibited an extremely stable structure attributed to the in situ growth strategy, overcoming volumetric expansion and self-aggregation of MnO. As an anode material for LIBs, this typical MnO/C electrode demonstrated a high reversible capacity of 1917 mAh · g at 300 mA · g and an excellent rate performance of 693.1 mAh · g at 5000 mA · g. More importantly, this biomass carbon-based material demonstrates a superior cycling stability of 1433.1 mAh · g at a high current density of 5000 mA · g after 1000 cycles. The significant electrical performance of this new type of green material is promising for the development of LIBs.

摘要

通过生物质模板策略,为锂离子电池(LIB)市场制备具有长寿命和高倍率性能的 MnO/C 材料是必不可少的。因此,迫切需要新颖有效的方法来合成它们,以大大缓解消耗不可再生资源的压力。在此,我们通过水热和热处理,从天然木棉纤维转化制备了一种开放式空心管状 MnO/C 杂化物。所制备的杂化物具有高的合成效率,并且由于原位生长策略,表现出极其稳定的结构,克服了 MnO 的体积膨胀和自团聚。作为 LIB 的阳极材料,这种典型的 MnO/C 电极在 300 mA·g 时具有 1917 mAh·g 的高可逆容量,在 5000 mA·g 时具有优异的倍率性能,为 693.1 mAh·g。更重要的是,这种生物质碳基材料在 5000 mA·g 的高电流密度下循环 1000 次后,仍具有 1433.1 mAh·g 的优异循环稳定性。这种新型绿色材料的显著电性能有望推动 LIB 的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验