MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Nanoscale. 2018 Nov 8;10(43):20313-20320. doi: 10.1039/c8nr05337e.
Engineering compositions, structures, and defects can endow nanomaterials with optimized catalytic properties. Here, we report that cobalt oxide (CoOx) ultrathin nanosheets (UTNS, ∼1.6 nm thick) with a large number of oxygen defects and mixed cobalt valences can be obtained through a facile one-step hydrothermal protocol. The large number of oxygen defects make the ultrathin CoOx nanosheet a superior OER catalyst with low overpotentials of 315 and 365 mV at current densities of 50 and 200 mA cm-2, respectively. The stable framework-like architectures of the UTNS further ensure their high OER activity and durability. Our method represents a facile one-step preparation of CoOx nanostructures with tunable compositions, morphologies, and defects, and thus promotes OER properties. This strategy may find its wider applicability in designing active, robust, and easy-to-obtain catalysts for OER and other electrocatalytic systems.
通过简便的一步水热法,我们可以得到具有大量氧缺陷和混合钴价的超薄钴氧化物(CoOx)纳米片(UTNS,约 1.6nm 厚)。大量的氧缺陷使超薄 CoOx 纳米片成为一种优越的 OER 催化剂,在电流密度为 50 和 200mA cm-2 时,过电位分别低至 315 和 365mV。UTNS 的稳定的框架状结构进一步确保了其高的 OER 活性和耐久性。我们的方法代表了一种简便的一步制备 CoOx 纳米结构的方法,可实现可调谐的组成、形态和缺陷,从而促进 OER 性能。该策略可能会在设计用于 OER 和其他电催化体系的活性、稳健和易于获得的催化剂方面具有更广泛的适用性。