Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Del. Coyoacán, Ciudad de México, México.
Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Del. Coyoacán, Ciudad de México, México.
Ann Bot. 2019 Feb 15;123(3):491-503. doi: 10.1093/aob/mcy182.
As angiosperms became one of the megadiverse groups of macroscopic eukaryotes, they forged modern ecosystems and promoted the evolution of extant terrestrial biota. Unequal distribution of species among lineages suggests that diversification, the process that ultimately determines species richness, acted differentially through angiosperm evolution.
We investigate how angiosperms became megadiverse by identifying the phylogenetic and temporal placement of exceptional radiations, by combining the most densely fossil-calibrated molecular clock phylogeny with a Bayesian model that identifies diversification shifts among evolutionary lineages and through time. We evaluate the effect of the prior number of expected shifts in the phylogenetic tree.
Major diversification increases took place over 100 Ma, from the Early Cretaceous to the end of the Paleogene, and are distributed across the angiosperm phylogeny. The long-term diversification trajectory of angiosperms shows moderate rate variation, but is underlain by increasing speciation and extinction, and results from temporally overlapping, independent radiations and depletions in component lineages.
The identified deep time diversification shifts are clues to the identification of ultimate drivers of angiosperm megadiversity, which probably involve multivariate interactions among intrinsic traits and extrinsic forces. An enhanced understanding of angiosperm diversification will involve a more precise phylogenetic location of diversification shifts, and integration of fossil information.
被子植物成为了宏观真核生物中多样性最大的群体之一,它们塑造了现代生态系统,并促进了现存陆生生物群的进化。谱系之间物种分布的不均衡表明,多样性是最终决定物种丰富度的过程,在被子植物的进化过程中发挥了不同的作用。
我们通过识别异常辐射的系统发育和时间位置,通过将最密集的化石校准分子钟系统发育与贝叶斯模型相结合,该模型可以识别进化谱系和随时间的多样化转变,来研究被子植物如何变得多样化。我们评估了系统发育树中预期转变数量的先验的影响。
从早白垩世到古近纪末期,超过 1 亿年的时间里,主要的多样化增加发生了,并分布在被子植物的系统发育中。被子植物的长期多样化轨迹显示出适度的速率变化,但受不断增加的物种形成和灭绝的影响,并且是由时间上重叠的、独立的辐射和组成谱系的耗竭所导致的。
确定的深时多样化转变是识别被子植物多样性终极驱动因素的线索,这些驱动因素可能涉及内在特征和外在力量之间的多元相互作用。对被子植物多样化的更深入理解将涉及对多样化转变的更精确的系统发育定位,以及化石信息的整合。