Suppr超能文献

GLIS3 通过转录激活 WNT 基因促进人胚胎干细胞向神经前体细胞的分化。

GLIS3 Transcriptionally Activates WNT Genes to Promote Differentiation of Human Embryonic Stem Cells into Posterior Neural Progenitors.

机构信息

Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.

Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.

出版信息

Stem Cells. 2019 Feb;37(2):202-215. doi: 10.1002/stem.2941. Epub 2018 Dec 2.

Abstract

Anterior-posterior (A-P) specification of the neural tube involves initial acquisition of anterior fate followed by the induction of posterior characteristics in the primitive anterior neuroectoderm. Several morphogens have been implicated in the regulation of A-P neural patterning; however, our understanding of the upstream regulators of these morphogens remains incomplete. Here, we show that the Krüppel-like zinc finger transcription factor GLI-Similar 3 (GLIS3) can direct differentiation of human embryonic stem cells (hESCs) into posterior neural progenitor cells in lieu of the default anterior pathway. Transcriptomic analyses reveal that this switch in cell fate is due to rapid activation of Wingless/Integrated (WNT) signaling pathway. Mechanistically, through genome-wide RNA-Seq, ChIP-Seq, and functional analyses, we show that GLIS3 binds to and directly regulates the transcription of several WNT genes, including the strong posteriorizing factor WNT3A, and that inhibition of WNT signaling is sufficient to abrogate GLIS3-induced posterior specification. Our findings suggest a potential role for GLIS3 in the regulation of A-P specification through direct transcriptional activation of WNT genes. Stem Cells 2018 Stem Cells 2019;37:202-215.

摘要

神经管的前后(A-P)特化涉及到对原始前神经外胚层的前命运的最初获得,然后是后特征的诱导。已经有几种形态发生素被牵连到 A-P 神经模式的调节中;然而,我们对这些形态发生素的上游调节剂的理解仍然不完整。在这里,我们表明 Krüppel 样锌指转录因子 GLI-Similar 3(GLIS3)可以直接将人类胚胎干细胞(hESC)分化为后神经祖细胞,而不是默认的前途径。转录组分析表明,这种细胞命运的转变是由于 Wingless/Integrated(WNT)信号通路的快速激活。通过全基因组 RNA-Seq、ChIP-Seq 和功能分析,从机制上表明 GLIS3 结合并直接调节几个 WNT 基因的转录,包括强有力的后化因子 WNT3A,并且抑制 WNT 信号足以消除 GLIS3 诱导的后特化。我们的研究结果表明,GLIS3 通过直接转录激活 WNT 基因,在 A-P 特化的调节中可能发挥作用。干细胞 2018 干细胞 2019;37:202-215。

相似文献

3
A GLIS3-CD133-WNT-signaling axis regulates the self-renewal of adult murine pancreatic progenitor-like cells in colonies and organoids.
J Biol Chem. 2019 Nov 8;294(45):16634-16649. doi: 10.1074/jbc.RA118.002818. Epub 2019 Sep 18.
4
SOX21 Ensures Rostral Forebrain Identity by Suppression of WNT8B during Neural Regionalization of Human Embryonic Stem Cells.
Stem Cell Reports. 2019 Dec 10;13(6):1038-1052. doi: 10.1016/j.stemcr.2019.10.013. Epub 2019 Nov 21.
5
Wnt signaling promotes hindgut fate commitment through regulating multi-lineage genes during hESC differentiation.
Cell Signal. 2017 Jan;29:12-22. doi: 10.1016/j.cellsig.2016.09.009. Epub 2016 Sep 29.
7
Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure.
EBioMedicine. 2015 Apr 18;2(6):513-27. doi: 10.1016/j.ebiom.2015.04.012. eCollection 2015 Jun.
8
as a Critical Regulator of Thyroid Primordium Specification.
Thyroid. 2020 Feb;30(2):277-289. doi: 10.1089/thy.2019.0196. Epub 2020 Jan 27.
10
Transcription Factor GLIS3: A New and Critical Regulator of Postnatal Stages of Mouse Spermatogenesis.
Stem Cells. 2016 Nov;34(11):2772-2783. doi: 10.1002/stem.2449. Epub 2016 Jul 11.

引用本文的文献

1
In vivo self-renewal and expansion of quiescent stem cells from a non-human primate.
Nat Commun. 2025 Jun 24;16(1):5370. doi: 10.1038/s41467-025-58897-x.
2
The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming.
Int J Mol Sci. 2025 May 26;26(11):5106. doi: 10.3390/ijms26115106.
4
GLIS3 expression in the thyroid gland in relation to TSH signaling and regulation of gene expression.
Cell Mol Life Sci. 2024 Jan 28;81(1):65. doi: 10.1007/s00018-024-05113-6.
5
Polycystin-2-dependent transcriptome reveals early response of autosomal dominant polycystic kidney disease.
Physiol Genomics. 2023 Nov 1;55(11):565-577. doi: 10.1152/physiolgenomics.00040.2023. Epub 2023 Sep 18.
8
GLIS1-3: Links to Primary Cilium, Reprogramming, Stem Cell Renewal, and Disease.
Cells. 2022 Jun 3;11(11):1833. doi: 10.3390/cells11111833.

本文引用的文献

1
GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases.
Cell Mol Life Sci. 2018 Oct;75(19):3473-3494. doi: 10.1007/s00018-018-2841-9. Epub 2018 May 19.
2
Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells.
Oncotarget. 2017 Aug 18;8(44):77041-77049. doi: 10.18632/oncotarget.20334. eCollection 2017 Sep 29.
3
GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation.
J Clin Invest. 2017 Dec 1;127(12):4326-4337. doi: 10.1172/JCI94417. Epub 2017 Oct 30.
4
GLIS1-3: emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance.
Stem Cell Investig. 2017 Sep 27;4:80. doi: 10.21037/sci.2017.09.01. eCollection 2017.
5
Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons.
Genomics. 2018 Mar;110(2):98-111. doi: 10.1016/j.ygeno.2017.09.001. Epub 2017 Sep 11.
6
Transcription Factor GLIS3: A New and Critical Regulator of Postnatal Stages of Mouse Spermatogenesis.
Stem Cells. 2016 Nov;34(11):2772-2783. doi: 10.1002/stem.2449. Epub 2016 Jul 11.
7
Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.
Dev Growth Differ. 2016 Jun;58(5):427-36. doi: 10.1111/dgd.12295. Epub 2016 Jun 9.
8
Fgf8 signaling for development of the midbrain and hindbrain.
Dev Growth Differ. 2016 Jun;58(5):437-45. doi: 10.1111/dgd.12293. Epub 2016 Jun 7.
10
Association of type 2 diabetes GWAS loci and the risk of Parkinson's and Alzheimer's diseases.
Parkinsonism Relat Disord. 2015 Dec;21(12):1435-40. doi: 10.1016/j.parkreldis.2015.10.010. Epub 2015 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验