Surface Technology Division , Korea Institute of Materials Science , Changwon , Gyeongnam 51508 , Republic of Korea.
Academy of Hybrid Materials, National Base of International Science & Technology Cooperation on Hybrid Materials , Qingdao University , Qingdao 266071 , People's Republic of China.
ACS Appl Mater Interfaces. 2018 Nov 28;10(47):40901-40910. doi: 10.1021/acsami.8b13377. Epub 2018 Nov 15.
Controlling the shape and crystallography of nanocrystals during the early growth stages of a noble metal layer is important because of its correlation with the final layer morphology and optoelectrical features, but this task is unattainable in vapor deposition processes dominated by artificially uncontrollable thermodynamic free energies. We report on experimental evidence for the controllable evolution of Ag nanocrystals as induced by the addition of nitrogen, presumed to be nonresidual in the Ag lattice given its strong float-out behavior. This atypical formation of energetically stable Ag nanocrystals with significantly improved wetting abilities on a chemically heterogeneous substrate promotes the development of an atomically flat, ultrathin, high-purity Ag layer with a thickness of only 5 nm. This facilitates the fabrication of Ag thin-film electrodes exhibiting highly enhanced optical transparency over a broad spectral range in the visible and near-infrared spectral range. An Ag thin-film electrode with a ZnO/Ag/ZnO configuration exhibits an average transmittance of about 95% in the spectral range of 400-800 nm with a maximum transmittance of over 98% at 580 nm, which is comparable with the best transparency values so far reported for transparent electrodes. This degree of optical transparency provides an excellent chance to improve the photon absorption of photovoltaic devices employing an Ag thin film as their window electrode. This is clearly confirmed by the superior performance of a flexible organic solar cell with a power conversion efficiency of 8.0%, which is far superior to that of the same solar cell using a conventional amorphous indium tin oxide electrode (6.4%).
控制贵金属层早期生长阶段纳米晶体的形状和晶体学结构非常重要,因为它与最终层形貌和光电特性相关,但在以人为不可控的热力学自由能为主导的气相沉积过程中,这一任务是无法实现的。我们报告了实验证据,证明氮的加入可以控制 Ag 纳米晶体的演化,据推测,氮在 Ag 晶格中是非残留的,因为其具有很强的浮脱行为。这种典型的形成具有显著改善润湿性的、能量稳定的 Ag 纳米晶体,在化学异质衬底上促进了原子级平坦、超薄、高纯度 Ag 层的发展,其厚度仅为 5nm。这有利于制造 Ag 薄膜电极,在可见和近红外光谱范围内具有高度增强的宽光谱透光率。具有 ZnO/Ag/ZnO 结构的 Ag 薄膜电极在 400-800nm 光谱范围内的平均透过率约为 95%,在 580nm 时最大透过率超过 98%,这与迄今为止报道的透明电极的最佳透明度值相当。这种透光率为利用 Ag 薄膜作为窗口电极的光伏器件提高光子吸收提供了极好的机会。这一点通过具有 8.0%功率转换效率的柔性有机太阳能电池的优异性能得到了明确证实,这远优于使用传统非晶硅氧化铟锡电极的相同太阳能电池(6.4%)。