Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA.
Hum Mol Genet. 2019 Mar 1;28(5):736-750. doi: 10.1093/hmg/ddy378.
Danforth's short tail (Sd) mice provide an excellent model for investigating the underlying etiology of human caudal birth defects, which affect 1 in 10 000 live births. Sd animals exhibit aberrant axial skeleton, urogenital and gastrointestinal development similar to human caudal malformation syndromes including urorectal septum malformation, caudal regression, vertebral-anal-cardiac-tracheo-esophageal fistula-renal-limb (VACTERL) association and persistent cloaca. Previous studies have shown that the Sd mutation results from an endogenous retroviral (ERV) insertion upstream of the Ptf1a gene resulting in its ectopic expression at E9.5. Though the genetic lesion has been determined, the resulting epigenomic and transcriptomic changes driving the phenotype have not been investigated. Here, we performed ATAC-seq experiments on isolated E9.5 tailbud tissue, which revealed minimal changes in chromatin accessibility in Sd/Sd mutant embryos. Interestingly, chromatin changes were localized to a small interval adjacent to the Sd ERV insertion overlapping a known Ptf1a enhancer region, which is conserved in mice and humans. Furthermore, mRNA-seq experiments revealed increased transcription of Ptf1a target genes and, importantly, downregulation of hedgehog pathway genes. Reduced sonic hedgehog (SHH) signaling was confirmed by in situ hybridization and immunofluorescence suggesting that the Sd phenotype results, in part, from downregulated SHH signaling. Taken together, these data demonstrate substantial transcriptome changes in the Sd mouse, and indicate that the effect of the ERV insertion on Ptf1a expression may be mediated by increased chromatin accessibility at a conserved Ptf1a enhancer. We propose that human caudal dysgenesis disorders may result from dysregulation of hedgehog signaling pathways.
Danforth 短尾(Sd)小鼠为研究人类尾部出生缺陷的潜在病因提供了一个极好的模型,这种出生缺陷影响了每 10000 例活产中的 1 例。Sd 动物表现出异常的轴骨骼、泌尿生殖和胃肠道发育,类似于人类尾部畸形综合征,包括尿直肠隔畸形、尾部退化、椎体-肛门-心脏-气管-食管-肾-肢体(VACTERL)联合畸形和持续性泄殖腔。先前的研究表明,Sd 突变是由于内源性逆转录病毒(ERV)插入 Ptf1a 基因的上游,导致其在 E9.5 时异位表达。尽管已经确定了遗传病变,但导致表型的表观基因组和转录组变化尚未得到研究。在这里,我们对分离的 E9.5 尾部芽组织进行了 ATAC-seq 实验,结果显示 Sd/Sd 突变胚胎的染色质可及性变化极小。有趣的是,染色质变化局限于与 Sd ERV 插入重叠的一小段区域,该区域紧邻 Ptf1a 增强子区域,在小鼠和人类中保守。此外,mRNA-seq 实验显示 Ptf1a 靶基因的转录增加,重要的是,Hedgehog 通路基因下调。通过原位杂交和免疫荧光证实 sonic hedgehog(SHH)信号降低,表明 Sd 表型部分由 SHH 信号下调引起。总之,这些数据表明 Sd 小鼠的转录组发生了实质性变化,并表明 ERV 插入对 Ptf1a 表达的影响可能是通过在保守的 Ptf1a 增强子上增加染色质可及性来介导的。我们提出,人类尾部发育不良障碍可能是 Hedgehog 信号通路失调的结果。