Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
Nucl Med Biol. 2018 Dec;67:21-26. doi: 10.1016/j.nucmedbio.2018.09.003. Epub 2018 Oct 12.
Radiochemists/radiopharmacists, involved in the preparation of radiopharmaceuticals are regularly confronted with the requirement of continuous high quality productions in their day-to-day business. One of these requirements is high specific or molar activity of the radiotracer in order to avoid e.g. receptor saturation and pharmacological or even toxic effects of the applied tracer for positron emission tomography. In the case of C-labeled radiotracers, the reasons for low molar activity are manifold and often the search for potential C-contaminations is time-consuming.
In this study, diverse C-contaminations were analyzed and quantified, which occurred during >450 syntheses of six PET tracers using [C]CO or [C]CHI generated via the gas phase method in a commercially available synthesizer. Additionally, non-radioactive syntheses were performed in order to identify the origins of carbon-12.
The manifold contributions to low molar activity can be attributed to three main categories, namely technical parameters (e.g. quality of target gases, reagents or tubings), inter/intralaboratory parameters (e.g. maintenance interval, burden of the module, etc.) and interoperator parameters (e.g. handling of the module).
Our study provides a better understanding of different factors contributing to the overall carbon load of a synthesis module, which facilitates maintenance of high molar activity of carbon-11-labeled radiopharmaceuticals.
从事放射性药物制备的放射化学家和放射药剂师在日常业务中经常需要持续高质量地生产。其中一个要求是放射性示踪剂的高比活度或摩尔活度,以避免受体饱和以及正电子发射断层扫描(PET)应用示踪剂的药理学甚至毒性作用。在 C 标记的放射性示踪剂的情况下,摩尔活度低的原因有很多,而且经常需要花费时间寻找潜在的 C 污染。
在这项研究中,分析和量化了在使用市售合成仪中通过气相法生成的 [C]CO 或 [C]CHI 进行的 6 种 PET 示踪剂的>450 次合成中发生的多种 C 污染。此外,还进行了非放射性合成,以确定碳-12 的来源。
低摩尔活度的多种贡献可归因于三个主要类别,即技术参数(例如靶气体、试剂或管材的质量)、实验室间/实验室内部参数(例如维护间隔、模块负担等)和操作员间参数(例如模块的处理)。
我们的研究更好地了解了导致合成模块总碳负荷的不同因素,这有助于维持碳-11 标记放射性药物的高摩尔活度。