Department of Acupuncture, Longyan First Hospital, Longyan, 364000, China.
School of Physics and Mechanical & Electrical Engineering, Longyan University, Longyan, 364012, China.
Biomed Eng Online. 2018 Nov 1;17(1):165. doi: 10.1186/s12938-018-0594-1.
The anterior cruciate ligament (ACL) plays an important role in stabilizing translation and rotation of the tibia relative to the femur. ACL injury alters knee kinematics and usually links to the alternation of gait patterns. The aim of this study is to develop a new method to distinguish between gait patterns of patients with anterior cruciate ligament deficient (ACL-D) knees and healthy controls with ACL-intact (ACL-I) knees based on nonlinear features and neural networks. Therefore ACL injury will be automatically and objectively detected.
First knee rotation and translation parameters are extracted and phase space reconstruction (PSR) is employed. The properties associated with the gait system dynamics are preserved in the reconstructed phase space. For the purpose of classification of ACL-D and ACL-I knee gait patterns, three-dimensional (3D) PSR together with Euclidean distance computation has been used. These measured parameters show significant difference in gait dynamics between the two groups and have been utilized to form a feature set. Neural networks are then constructed to identify gait dynamics and are utilized as the classifier to distinguish between ACL-D and ACL-I knee gait patterns based on the difference of gait dynamics between the two groups.
Experiments are carried out on a database containing 18 patients with ACL injury and 28 healthy controls to assess the effectiveness of the proposed method. By using the twofold and leave-one-subject-out cross-validation styles, the correct classification rates for ACL-D and ACL-I knees are reported to be 91.3[Formula: see text] and 95.65[Formula: see text], respectively.
Compared with other state-of-the-art methods, the results demonstrate that gait alterations in the presence of ACL deficiency can be detected with superior performance. The proposed method is a potential candidate for the automatic and non-invasive classification between patients with ACL deficiency and healthy subjects.
前交叉韧带(ACL)在稳定胫骨相对于股骨的平移和旋转方面起着重要作用。ACL 损伤会改变膝关节运动学,通常与步态模式的改变有关。本研究旨在开发一种新方法,基于非线性特征和神经网络,区分 ACL 缺失(ACL-D)膝关节和 ACL 完整(ACL-I)膝关节患者的步态模式。因此,ACL 损伤将被自动和客观地检测到。
首先提取膝关节旋转和平移参数,并进行相空间重构(PSR)。在重构的相空间中保留与步态系统动力学相关的特性。为了对 ACL-D 和 ACL-I 膝关节步态模式进行分类,使用三维(3D)PSR 结合欧几里得距离计算。这些测量参数在两组之间的步态动力学中表现出显著差异,并被用于形成特征集。然后构建神经网络来识别步态动力学,并利用其作为分类器,根据两组之间的步态动力学差异来区分 ACL-D 和 ACL-I 膝关节步态模式。
在包含 18 名 ACL 损伤患者和 28 名健康对照的数据库上进行实验,以评估所提出方法的有效性。通过使用两倍和留一受试者外交叉验证方法,报告 ACL-D 和 ACL-I 膝关节的正确分类率分别为 91.3[公式:见正文]和 95.65[公式:见正文]。
与其他最先进的方法相比,结果表明可以通过该方法以优异的性能检测 ACL 缺失时的步态改变。该方法是一种用于自动和非侵入性区分 ACL 缺失患者和健康受试者的潜在候选方法。