Suppr超能文献

用于步态分析的模式识别的临床特征选择。

Selection of clinical features for pattern recognition applied to gait analysis.

作者信息

Altilio Rosa, Paoloni Marco, Panella Massimo

机构信息

Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome "La Sapienza", Via Eudossiana, 18, 00184, Rome, Italy.

Biomechanics and Movement Analysis Laboratory, Physical Medicine and Rehabilitation, University of Rome "La Sapienza", Piazzale Aldo Moro, 5, 00185, Rome, Italy.

出版信息

Med Biol Eng Comput. 2017 Apr;55(4):685-695. doi: 10.1007/s11517-016-1546-1. Epub 2016 Jul 19.

Abstract

This paper deals with the opportunity of extracting useful information from medical data retrieved directly from a stereophotogrammetric system applied to gait analysis. A feature selection method to exhaustively evaluate all the possible combinations of the gait parameters is presented, in order to find the best subset able to classify among diseased and healthy subjects. This procedure will be used for estimating the performance of widely used classification algorithms, whose performance has been ascertained in many real-world problems with respect to well-known classification benchmarks, both in terms of number of selected features and classification accuracy. Precisely, support vector machine, Naive Bayes and K nearest neighbor classifiers can obtain the lowest classification error, with an accuracy greater than 97 %. For the considered classification problem, the whole set of features will be proved to be redundant and it can be significantly pruned. Namely, groups of 3 or 5 features only are able to preserve high accuracy when the aim is to check the anomaly of a gait. The step length and the swing speed are the most informative features for the gait analysis, but also cadence and stride may add useful information for the movement evaluation.

摘要

本文探讨了从直接应用于步态分析的立体摄影测量系统检索到的医学数据中提取有用信息的机会。提出了一种特征选择方法,用于详尽评估步态参数的所有可能组合,以便找到能够在患病和健康受试者之间进行分类的最佳子集。此过程将用于估计广泛使用的分类算法的性能,这些算法在许多实际问题中针对知名分类基准在所选特征数量和分类准确性方面的性能已得到确定。具体而言,支持向量机、朴素贝叶斯和K近邻分类器可获得最低的分类误差,准确率大于97%。对于所考虑的分类问题,将证明整个特征集是冗余的,并且可以进行显著删减。也就是说,当目的是检查步态异常时,仅3个或5个特征的组就能保持高精度。步长和摆动速度是步态分析中信息量最大的特征,但步频和步幅也可能为运动评估增添有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验