Suppr超能文献

SAT-1 硫酸盐转运蛋白缺失对小鼠肠道草酸盐处理没有影响,也不会导致高草酸尿症或高草酸血症。

Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia.

机构信息

Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, Florida.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2019 Jan 1;316(1):G82-G94. doi: 10.1152/ajpgi.00299.2018. Epub 2018 Nov 1.

Abstract

The anion exchanger SAT-1 [sulfate anion transporter 1 (Slc26a1)] is considered an important regulator of oxalate and sulfate homeostasis, but the mechanistic basis of these critical roles remain undetermined. Previously, characterization of the SAT-1-knockout (KO) mouse suggested that the loss of SAT-1-mediated oxalate secretion by the intestine was responsible for the hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis reportedly displayed by this model. To test this hypothesis, we compared the transepithelial fluxes of C-oxalate, , and Cl across isolated, short-circuited segments of the distal ileum, cecum, and distal colon from wild-type (WT) and SAT-1-KO mice. The absence of SAT-1 did not impact the transport of these anions by any part of the intestine examined. Additionally, SAT-1-KO mice were neither hyperoxaluric nor hyperoxalemic. Instead, 24-h urinary oxalate excretion was almost 50% lower than in WT mice. With no contribution from the intestine, we suggest that this may reflect the loss of SAT-1-mediated oxalate efflux from the liver. SAT-1-KO mice were, however, profoundly hyposulfatemic, even though there were no changes to intestinal sulfate handling, and the renal clearances of sulfate and creatinine indicated diminished rates of sulfate reabsorption by the proximal tubule. Aside from this distinct sulfate phenotype, we were unable to reproduce the hyperoxaluria, hyperoxalemia, and urolithiasis of the original SAT-1-KO model. In conclusion, oxalate and sulfate transport by the intestine were not dependent on SAT-1, and we found no evidence supporting the long-standing hypothesis that intestinal SAT-1 contributes to oxalate and sulfate homeostasis. NEW & NOTEWORTHY SAT-1 is a membrane-bound transport protein expressed in the intestine, liver, and kidney, where it is widely considered essential for the excretion of oxalate, a potentially toxic waste metabolite. Previously, calcium oxalate kidney stone formation by the SAT-1-knockout mouse generated the hypothesis that SAT-1 has a major role in oxalate excretion via the intestine. We definitively tested this proposal and found no evidence for SAT-1 as an intestinal anion transporter contributing to oxalate homeostasis.

摘要

阴离子交换器 SAT-1[硫酸盐阴离子转运蛋白 1 (Slc26a1)]被认为是调节草酸和硫酸盐内稳态的重要调节剂,但这些关键作用的机制基础仍未确定。先前,SAT-1 敲除 (KO) 小鼠的特征表明,肠道中 SAT-1 介导的草酸分泌丧失是导致该模型中报告的高草酸尿症、高草酸血症和草酸钙尿石形成的原因。为了验证这一假设,我们比较了野生型 (WT) 和 SAT-1-KO 小鼠的回肠、盲肠和结肠远端分离的短环段上皮细胞之间 C-草酸、[14C] 硫酸盐和 Cl-的跨上皮通量。SAT-1 的缺失并未影响任何肠段对这些阴离子的转运。此外,SAT-1-KO 小鼠既不高草酸尿症也不高草酸血症。相反,24 小时尿草酸排泄量比 WT 小鼠低近 50%。由于肠道没有贡献,我们认为这可能反映了 SAT-1 介导的肝脏草酸外排的丧失。然而,SAT-1-KO 小鼠严重低硫酸盐血症,尽管肠道硫酸盐处理没有变化,而且硫酸盐和肌酐的肾清除率表明近端肾小管的硫酸盐重吸收率降低。除了这种明显的硫酸盐表型外,我们无法复制原始 SAT-1-KO 模型的高草酸尿症、高草酸血症和尿石形成。总之,肠道的草酸和硫酸盐转运不依赖于 SAT-1,我们没有发现任何证据支持长期存在的假设,即肠道 SAT-1 有助于草酸和硫酸盐的内稳态。新的和值得注意的是,SAT-1 是一种在肠道、肝脏和肾脏中表达的膜结合转运蛋白,它被广泛认为是排泄草酸的必需物质,草酸是一种潜在的有毒代谢物。先前,SAT-1 敲除小鼠的钙草酸肾结石形成产生了 SAT-1 通过肠道在排泄草酸中起主要作用的假说。我们明确地测试了这一假设,没有发现 SAT-1 作为肠道阴离子转运体有助于草酸内稳态的证据。

相似文献

1
Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia.
Am J Physiol Gastrointest Liver Physiol. 2019 Jan 1;316(1):G82-G94. doi: 10.1152/ajpgi.00299.2018. Epub 2018 Nov 1.
2
Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate.
Am J Physiol Gastrointest Liver Physiol. 2013 Oct 1;305(7):G520-7. doi: 10.1152/ajpgi.00167.2013. Epub 2013 Jul 25.
3
Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice.
J Clin Invest. 2010 Mar;120(3):706-12. doi: 10.1172/JCI31474. Epub 2010 Feb 15.
4
The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine.
Pflugers Arch. 2021 Jan;473(1):95-106. doi: 10.1007/s00424-020-02495-x. Epub 2020 Nov 17.
5
Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter.
Am J Physiol Gastrointest Liver Physiol. 2011 Mar;300(3):G461-9. doi: 10.1152/ajpgi.00434.2010. Epub 2010 Dec 16.
6
Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.
Am J Physiol Gastrointest Liver Physiol. 2017 Sep 1;313(3):G166-G179. doi: 10.1152/ajpgi.00079.2017. Epub 2017 May 19.
7
9
Oxalate: from the environment to kidney stones.
Arh Hig Rada Toksikol. 2013 Dec;64(4):609-30. doi: 10.2478/10004-1254-64-2013-2428.

引用本文的文献

1
Autophagy Regulates Putative Anion Transporter 1 Expression in Intestinal Epithelial Cells.
J Cell Mol Med. 2025 May;29(9):e70513. doi: 10.1111/jcmm.70513.
2
SLC26 Anion Transporters.
Handb Exp Pharmacol. 2024;283:319-360. doi: 10.1007/164_2023_698.
3
SLC26 family: a new insight for kidney stone disease.
Front Physiol. 2023 May 25;14:1118342. doi: 10.3389/fphys.2023.1118342. eCollection 2023.
4
SLC26A1 is a major determinant of sulfate homeostasis in humans.
J Clin Invest. 2023 Feb 1;133(3):e161849. doi: 10.1172/JCI161849.
5
Oxalate homeostasis.
Nat Rev Nephrol. 2023 Feb;19(2):123-138. doi: 10.1038/s41581-022-00643-3. Epub 2022 Nov 3.
7
The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine.
Pflugers Arch. 2021 Jan;473(1):95-106. doi: 10.1007/s00424-020-02495-x. Epub 2020 Nov 17.
8
Enteric Oxalate Secretion Mediated by Slc26a6 Defends against Hyperoxalemia in Murine Models of Chronic Kidney Disease.
J Am Soc Nephrol. 2020 Sep;31(9):1987-1995. doi: 10.1681/ASN.2020010105. Epub 2020 Jul 13.
9
Activation of the PKA signaling pathway stimulates oxalate transport by human intestinal Caco2-BBE cells.
Am J Physiol Cell Physiol. 2020 Feb 1;318(2):C372-C379. doi: 10.1152/ajpcell.00135.2019. Epub 2019 Dec 11.

本文引用的文献

1
Oxalate transport by the mouse intestine in vitro is not affected by chronic challenges to systemic acid-base homeostasis.
Urolithiasis. 2019 Jun;47(3):243-254. doi: 10.1007/s00240-018-1067-5. Epub 2018 Jun 14.
2
Update on Hereditary Kidney Stone Disease and Introduction of a New Clinical Patient Registry in Germany.
Front Pediatr. 2018 Mar 7;6:47. doi: 10.3389/fped.2018.00047. eCollection 2018.
3
Genetic differences in C57BL/6 mouse substrains affect kidney crystal deposition.
Urolithiasis. 2018 Nov;46(6):515-522. doi: 10.1007/s00240-018-1040-3. Epub 2018 Jan 23.
4
Personalized Intervention in Monogenic Stone Formers.
J Urol. 2018 Mar;199(3):623-632. doi: 10.1016/j.juro.2017.09.143. Epub 2017 Oct 20.
5
Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.
Am J Physiol Gastrointest Liver Physiol. 2017 Sep 1;313(3):G166-G179. doi: 10.1152/ajpgi.00079.2017. Epub 2017 May 19.
6
Genetics and pathophysiology of mammalian sulfate biology.
J Genet Genomics. 2017 Jan 20;44(1):7-20. doi: 10.1016/j.jgg.2016.08.001. Epub 2016 Aug 13.
7
Progress in Understanding the Genetics of Calcium-Containing Nephrolithiasis.
J Am Soc Nephrol. 2017 Mar;28(3):748-759. doi: 10.1681/ASN.2016050576. Epub 2016 Dec 8.
8
The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man.
Urolithiasis. 2017 Feb;45(1):89-108. doi: 10.1007/s00240-016-0952-z. Epub 2016 Dec 2.
9
Tubular and genetic disorders associated with kidney stones.
Urolithiasis. 2017 Feb;45(1):127-137. doi: 10.1007/s00240-016-0945-y. Epub 2016 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验