Suppr超能文献

增强推荐系统抵御垃圾信息发送者的鲁棒性。

Enhancing the robustness of recommender systems against spammers.

机构信息

School of computer and software, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China.

ShuKun (BeiJing) Network Technology Co., Limited, Room 313, Building 3, No. 11, Chuangxin Road, Science Park, Changping District, Beijing, China.

出版信息

PLoS One. 2018 Nov 1;13(11):e0206458. doi: 10.1371/journal.pone.0206458. eCollection 2018.

Abstract

The accuracy and diversity of recommendation algorithms have always been the research hotspot of recommender systems. A good recommender system should not only have high accuracy and diversity, but also have adequate robustness against spammer attacks. However, the issue of recommendation robustness has received relatively little attention in the literature. In this paper, we systematically study the influences of different spammer behaviors on the recommendation results in various recommendation algorithms. We further propose an improved algorithm by incorporating the inner-similarity of user's purchased items in the classic KNN approach. The new algorithm effectively enhances the robustness against spammer attacks and thus outperforms traditional algorithms in recommendation accuracy and diversity when spammers exist in the online commercial systems.

摘要

推荐算法的准确性和多样性一直是推荐系统的研究热点。一个好的推荐系统不仅应该具有高精度和多样性,还应该具有足够的抵御垃圾邮件发送者攻击的鲁棒性。然而,推荐鲁棒性问题在文献中受到的关注相对较少。在本文中,我们系统地研究了不同垃圾邮件发送者行为对各种推荐算法推荐结果的影响。我们进一步通过在经典 KNN 方法中结合用户购买项目的内部相似性,提出了一种改进算法。在在线商业系统中存在垃圾邮件发送者时,新算法有效地提高了对垃圾邮件发送者攻击的鲁棒性,从而在推荐准确性和多样性方面优于传统算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c58/6211683/83437edabdf6/pone.0206458.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验