Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan.
Department of Computer Engineering, University of Engineering and Technology, Taxila, Pakistan.
PLoS One. 2019 Aug 1;14(8):e0220129. doi: 10.1371/journal.pone.0220129. eCollection 2019.
One of the main concerns for online shopping websites is to provide efficient and customized recommendations to a very large number of users based on their preferences. Collaborative filtering (CF) is the most famous type of recommender system method to provide personalized recommendations to users. CF generates recommendations by identifying clusters of similar users or items from the user-item rating matrix. This cluster of similar users or items is generally identified by using some similarity measurement method. Among numerous proposed similarity measure methods by researchers, the Pearson correlation coefficient (PCC) is a commonly used similarity measure method for CF-based recommender systems. The standard PCC suffers some inherent limitations and ignores user rating preference behavior (RPB). Typically, users have different RPB, where some users may give the same rating to various items without liking the items and some users may tend to give average rating albeit liking the items. Traditional similarity measure methods (including PCC) do not consider this rating pattern of users. In this article, we present a novel similarity measure method to consider user RPB while calculating similarity among users. The proposed similarity measure method state user RPB as a function of user average rating value, and variance or standard deviation. The user RPB is then combined with an improved model of standard PCC to form an improved similarity measure method for CF-based recommender systems. The proposed similarity measure is named as improved PCC weighted with RPB (IPWR). The qualitative and quantitative analysis of the IPWR similarity measure method is performed using five state-of-the-art datasets (i.e. Epinions, MovieLens-100K, MovieLens-1M, CiaoDVD, and MovieTweetings). The IPWR similarity measure method performs better than state-of-the-art similarity measure methods in terms of mean absolute error (MAE), root mean square error (RMSE), precision, recall, and F-measure.
在线购物网站的主要关注点之一是根据用户的喜好为大量用户提供高效和定制化的推荐。协同过滤(CF)是提供个性化推荐给用户的最著名的推荐系统方法之一。CF 通过从用户-项目评分矩阵中识别相似用户或项目的集群来生成推荐。通常使用某种相似性度量方法来识别这些相似用户或项目的集群。在研究人员提出的众多相似性度量方法中,皮尔逊相关系数(PCC)是 CF 为基础的推荐系统中常用的相似性度量方法。标准 PCC 存在一些固有局限性,忽略了用户评分偏好行为(RPB)。通常,用户具有不同的 RPB,有些用户可能对各种项目给予相同的评分而不喜欢这些项目,有些用户可能倾向于给予平均评分,尽管喜欢这些项目。传统的相似性度量方法(包括 PCC)没有考虑用户的这种评分模式。在本文中,我们提出了一种新颖的相似性度量方法,用于在计算用户之间的相似性时考虑用户的 RPB。所提出的相似性度量方法将用户的 RPB 表示为用户平均评分值、方差或标准差的函数。然后,将用户的 RPB 与标准 PCC 的改进模型相结合,形成 CF 为基础的推荐系统的改进相似性度量方法。所提出的相似性度量方法被命名为考虑 RPB 的改进 PCC(IPWR)。使用五个最先进的数据集(即 Epinions、MovieLens-100K、MovieLens-1M、CiaoDVD 和 MovieTweetings)对 IPWR 相似性度量方法进行了定性和定量分析。在平均绝对误差(MAE)、均方根误差(RMSE)、精度、召回率和 F 度量方面,IPWR 相似性度量方法的性能优于最先进的相似性度量方法。