Suppr超能文献

GO-石墨烯墨水衍生的分层 3D 石墨烯结构负载 FeO 纳米点,作为高性能锂/钠存储和超级电容器电极。

GO-graphene ink-derived hierarchical 3D-graphene architecture supported FeO nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors.

机构信息

Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062 PR China.

Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062 PR China.

出版信息

J Colloid Interface Sci. 2019 Feb 15;536:463-473. doi: 10.1016/j.jcis.2018.10.071. Epub 2018 Oct 25.

Abstract

Transition metal oxides/carbon materials are of great interest for promising highly efficient energy storage applications owing to their low cost and eco-friendlines. Nevertheless, creating an electrode material with enhanced conductivity and electrochemical activity remains a great challenge. Here a design and fabrication of FeO nanodots (∼5.2 nm) loading onto the hierarchical three dimensional graphene (FeO/3D-graphene) via an interesting strategy is reported. The key factor in developing the unique 3D-graphene architecture assemblies with a graphene oxide-graphene composite ink and modifying sol-gel chemistry method is a promising strategy. The 3D-graphene with 3D omnibearing conductive and interconnecting pores can facilitate the penetration of electrolyte, accommodate the volume change and inhibit the aggregation of FeO nanodots upon cycling. Benefiting from the advantages of the positive synergistic effects of FeO nanodots and multilevel structures of graphene, the FeO/3D-graphene electrode exhibits excellent electrochemical performances for Li/Na-ion batteries and electrochemical capacitors. As a result of the enhanced electrochemical performance, FeO/3D-graphene hybrids could be regarded as a promising electrode for Li/Na-ion battery and supercapacitor.

摘要

过渡金属氧化物/碳材料由于其低成本和环境友好性,在有前途的高效储能应用中受到极大关注。然而,创造具有增强导电性和电化学活性的电极材料仍然是一个巨大的挑战。在这里,通过一种有趣的策略,报道了将 FeO 纳米点(约 5.2nm)负载到分层三维石墨烯(FeO/3D-石墨烯)上的设计和制造。通过氧化石墨烯-石墨烯复合墨水和修饰溶胶-凝胶化学方法开发独特的 3D-石墨烯结构组装体的关键因素是一种很有前途的策略。具有 3D 全方位导电和互联孔的 3D 石墨烯可以促进电解质的渗透,适应体积变化,并在循环过程中抑制 FeO 纳米点的聚集。得益于 FeO 纳米点的正协同效应和石墨烯的多级结构的优势,FeO/3D-石墨烯电极在锂离子/钠离子电池和电化学电容器中表现出优异的电化学性能。由于电化学性能得到了提高,FeO/3D-石墨烯杂化物可以被视为锂离子/钠离子电池和超级电容器的一种很有前途的电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验