Suppr超能文献

高效还原氧化石墨烯接枝多孔 Fe3O4 复合材料作为锂离子电池高性能阳极材料。

Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

机构信息

Centre for Nano Materials, International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad-500 005, India.

出版信息

Phys Chem Chem Phys. 2014 Mar 21;16(11):5284-94. doi: 10.1039/c3cp54778g.

Abstract

Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

摘要

在这里,我们报告了一种简便的方法制备 Fe3O4-还原氧化石墨烯(Fe3O4-RGO)复合材料,即微波辅助燃烧合成多孔 Fe3O4 颗粒,然后用 RGO 对 Fe3O4 进行修饰。Fe3O4-RGO 复合材料的表征研究表明,形成了面心立方六方晶相的 Fe3O4,以及 RGO 均匀地接枝在 Fe3O4 颗粒上。氮气吸附-脱附等温线表明存在多孔结构,比表面积和孔体积分别为 81.67 m(2) g(-1)和 0.106 cm(3) g(-1)。Fe3O4-RGO 复合材料的 Raman 光谱研究证实了石墨碳的存在。电化学研究表明,该复合材料具有高可逆锂离子存储容量,增强的循环寿命和高库仑效率。Fe3O4-RGO 复合材料在电流密度为 1 C、3 C 和 5 C 时,可逆容量分别为 612、543 和 446 mA h g(-1),50 次循环后的库仑效率为 98%,高于石墨和 Fe3O4-碳复合材料。循环伏安实验表明,在 Fe3O4-RGO 复合材料的起始和随后的循环过程中,存在不可逆和可逆的锂离子存储。结果强调了我们的策略的重要性,该策略在高容量保持率和良好的循环稳定性方面表现出了有前景的电化学性能。协同性质,(i)高比表面积和孔体积的多孔 Fe3O4 颗粒提高了离子扩散性,(ii)RGO 接枝提高了电子导电性,这归因于 Fe3O4 的优异电化学性能,使得这种材料很有吸引力,可作为锂离子存储的阳极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验