Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.
J Theor Biol. 2019 Feb 7;462:26-47. doi: 10.1016/j.jtbi.2018.10.054. Epub 2018 Oct 30.
We consider hybrid spatial modeling approaches for ecological systems with a generalist predator utilizing a prey and either a second prey or an allochthonous resource. While spatial dispersion of populations is often modeled via stepping-stone (discrete spatial patches) or continuum (one connected spatial domain) formulations, we shall be interested in hybrid approaches which we use to reduce the dimension of certain components of the spatial domain, obtaining either a continuum model of varying spatial dimensions, or a mixed stepping-stone-continuum model. This approach results in models consisting of partial differential equations for some of the species which are coupled via reactive boundary conditions to lower dimensional partial differential equations or ordinary differential equations for the other species. In order to demonstrate the use of this approach, we consider two case studies. In the first case study, we consider a one-predator two-prey interaction between beavers, wolves and white-tailed deer in Voyageurs National Park. In the second case study, we consider predator-prey-allochthonous resource interactions between bears, berries and salmon on Kodiak Island. For each case study, we compare the results from the hybrid modeling approach with corresponding stepping-stone and continuum model results, highlighting benefits and limitations of the method. In some cases, we find that the hybrid modeling approach allows for solutions which are easier to simulate (akin to stepping-stone models) while maintaining seemingly more realistic spatial dynamics (akin to full continuum models).
我们考虑了利用猎物和第二猎物或异源资源的一般捕食者的生态系统的混合空间建模方法。虽然种群的空间分散通常通过跳板(离散的空间斑块)或连续体(一个连续的空间域)公式进行建模,但我们将对混合方法感兴趣,我们使用这些方法来降低空间域的某些组件的维度,得到具有不同空间维度的连续体模型,或混合跳板-连续体模型。这种方法导致由一些物种的偏微分方程组成的模型,这些物种通过反应边界条件与其他物种的低维偏微分方程或常微分方程耦合。为了演示这种方法的使用,我们考虑了两个案例研究。在第一个案例研究中,我们考虑了在沃伊捷耶国家公园中的海狸、狼和白尾鹿之间的单一捕食者两种猎物相互作用。在第二个案例研究中,我们考虑了在科迪亚克岛上的熊、浆果和鲑鱼之间的捕食者-猎物-异源资源相互作用。对于每个案例研究,我们将混合建模方法的结果与相应的跳板和连续体模型结果进行比较,突出该方法的优势和局限性。在某些情况下,我们发现混合建模方法允许更容易模拟的解决方案(类似于跳板模型),同时保持看似更现实的空间动态(类似于完整的连续体模型)。