Suppr超能文献

R语言中的近远匹配:nearfar包

Near-Far Matching in R: The nearfar Package.

作者信息

Rigdon Joseph, Baiocchi Michael, Basu Sanjay

机构信息

Stanford University.

出版信息

J Stat Softw. 2018;86(CS-5). doi: 10.18637/jss.v086.c05. Epub 2018 Sep 3.

Abstract

Estimating the causal treatment effect of an intervention using observational data is difficult due to unmeasured confounders. Many analysts use instrumental variables (IVs) to introduce a randomizing element to observational data analysis, potentially reducing bias created by unobserved confounders. Several persistent problems in the field have served as limitations to IV analyses, particularly the prevalence of "weak" IVs, or instrumental variables that do not effectively randomize individuals to the intervention or control group (leading to biased and unstable treatment effect estimates), as well as IV-based estimates being highly model dependent, requiring parametric adjustment for measured confounders, and often having high mean squared errors in the estimated causal effects. To overcome these problems, the study design method of "near-far matching" has been devised, which "filters" data from a cohort by simultaneously matching individuals within the cohort to be "near" (similar) on measured confounders and "far" (different) on levels of an IV. To facilitate the application of near-far matching to analytical problems, we introduce the R package and illustrate its application to both a classical example and a simulated dataset. We illustrate how the package can be used to "strengthen" a weak IV by adjusting the "near-ness" and "far-ness" of a match, reduce model dependency, enable nonparametric adjustment for measured confounders, and lower mean squared error in estimated causal effects. We additionally illustrate how to utilize the package when analyzing either continuous or binary treatments, how to prioritize variables in the match, and how to calculate statistics of IV strength with or without adjustment for measured confounders.

摘要

由于存在未测量的混杂因素,使用观察性数据估计干预措施的因果治疗效果很困难。许多分析人员使用工具变量(IVs)为观察性数据分析引入随机化元素,有可能减少未观察到的混杂因素所造成的偏差。该领域中存在的几个持续性问题一直是IV分析的局限性,特别是“弱”IVs的普遍存在,即那些不能有效地将个体随机分配到干预组或对照组的工具变量(导致有偏差且不稳定的治疗效果估计),以及基于IV的估计高度依赖模型,需要对测量到的混杂因素进行参数调整,并且在估计的因果效应中往往具有较高的均方误差。为了克服这些问题,人们设计了“近远匹配”的研究设计方法,该方法通过同时使队列中的个体在测量到的混杂因素上“接近”(相似)而在IV水平上“远离”(不同)来“过滤”队列中的数据。为了便于将近远匹配应用于分析问题,我们引入了R包,并说明其在一个经典例子和一个模拟数据集上的应用。我们说明了如何通过调整匹配的“接近度”和“远离度”来使用该包“强化”弱IV,减少模型依赖性,对测量到的混杂因素进行非参数调整,并降低估计因果效应中的均方误差。我们还说明了在分析连续或二元治疗时如何使用该包,如何在匹配中对变量进行优先级排序,以及如何在有或没有对测量到的混杂因素进行调整的情况下计算IV强度的统计量。

相似文献

1
Near-Far Matching in R: The nearfar Package.
J Stat Softw. 2018;86(CS-5). doi: 10.18637/jss.v086.c05. Epub 2018 Sep 3.
3
Near/far matching: a study design approach to instrumental variables.
Health Serv Outcomes Res Methodol. 2012 Dec;12(4):237-253. doi: 10.1007/s10742-012-0091-0. Epub 2012 Jun 9.
6
7
The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
Stat Methods Med Res. 2020 Aug;29(8):2119-2139. doi: 10.1177/0962280219883323. Epub 2019 Nov 7.
8
On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
Stat Med. 2015 Mar 30;34(7):1150-68. doi: 10.1002/sim.6404. Epub 2014 Dec 29.
9
Performance of instrumental variable methods in cohort and nested case-control studies: a simulation study.
Pharmacoepidemiol Drug Saf. 2014 Feb;23(2):165-77. doi: 10.1002/pds.3555. Epub 2013 Dec 5.
10
A simulation study on matched case-control designs in the perspective of causal diagrams.
BMC Med Res Methodol. 2016 Aug 20;16(1):102. doi: 10.1186/s12874-016-0206-3.

引用本文的文献

2
Quality Measure Adherence and Oral Health Outcomes in Children.
JAMA Netw Open. 2024 Jan 2;7(1):e2353861. doi: 10.1001/jamanetworkopen.2023.53861.
3
Toward a Precision Treatment Approach for Metabolic Depression: Integrating Epidemiology, Neuroscience, and Psychiatry.
Biol Psychiatry Glob Open Sci. 2023 Aug 22;3(4):623-631. doi: 10.1016/j.bpsgos.2023.08.008. eCollection 2023 Oct.
4
Association Between Receipt of a Medically Tailored Meal Program and Health Care Use.
JAMA Intern Med. 2019 Jun 1;179(6):786-793. doi: 10.1001/jamainternmed.2019.0198.

本文引用的文献

1
Strengthening Instrumental Variables Through Weighting.
Stat Biosci. 2017 Dec;9(2):320-338. doi: 10.1007/s12561-016-9149-9. Epub 2016 May 26.
2
Near/far matching: a study design approach to instrumental variables.
Health Serv Outcomes Res Methodol. 2012 Dec;12(4):237-253. doi: 10.1007/s10742-012-0091-0. Epub 2012 Jun 9.
3
Instrumental variable methods for causal inference.
Stat Med. 2014 Jun 15;33(13):2297-340. doi: 10.1002/sim.6128. Epub 2014 Mar 6.
4
Optimal Nonbipartite Matching and Its Statistical Applications.
Am Stat. 2011;65(1):21-30. doi: 10.1198/tast.2011.08294. Epub 2012 Jan 1.
5
Avoiding bias from weak instruments in Mendelian randomization studies.
Int J Epidemiol. 2011 Jun;40(3):755-64. doi: 10.1093/ije/dyr036. Epub 2011 Mar 16.
6
Growing up in poor neighborhoods: how much does it matter?
Science. 1989 Mar 17;243(4897):1441-5. doi: 10.1126/science.243.4897.1441.
7
Optimal multivariate matching before randomization.
Biostatistics. 2004 Apr;5(2):263-75. doi: 10.1093/biostatistics/5.2.263.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验