Suppr超能文献

通过加权增强工具变量

Strengthening Instrumental Variables Through Weighting.

作者信息

Lehmann Douglas, Li Yun, Saran Rajiv, Li Yi

机构信息

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Department of Nephrology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.

出版信息

Stat Biosci. 2017 Dec;9(2):320-338. doi: 10.1007/s12561-016-9149-9. Epub 2016 May 26.

Abstract

Instrumental variable (IV) methods are widely used to deal with the issue of unmeasured confounding and are becoming popular in health and medical research. IV models are able to obtain consistent estimates in the presence of unmeasured confounding, but rely on assumptions that are hard to verify and often criticized. An instrument is a variable that influences or encourages individuals toward a particular treatment without directly affecting the outcome. Estimates obtained using instruments with a weak influence over the treatment are known to have larger small-sample bias and to be less robust to the critical IV assumption that the instrument is randomly assigned. In this work, we propose a weighting procedure for strengthening the instrument while matching. Through simulations, weighting is shown to strengthen the instrument and improve robustness of resulting estimates. Unlike existing methods, weighting is shown to increase instrument strength without compromising match quality. We illustrate the method in a study comparing mortality between kidney dialysis patients receiving hemodialysis or peritoneal dialysis as treatment for end-stage renal disease.

摘要

工具变量(IV)方法被广泛用于处理未测量混杂因素的问题,并且在健康和医学研究中越来越受欢迎。IV模型能够在存在未测量混杂因素的情况下获得一致的估计值,但依赖于难以验证且经常受到批评的假设。一个工具变量是一个影响或促使个体接受特定治疗而不直接影响结果的变量。已知使用对治疗影响较弱的工具变量获得的估计值具有更大的小样本偏差,并且对工具变量是随机分配这一关键IV假设的稳健性较差。在这项工作中,我们提出了一种在匹配时增强工具变量的加权程序。通过模拟表明,加权可以增强工具变量并提高所得估计值的稳健性。与现有方法不同,加权在不影响匹配质量的情况下增强了工具变量的强度。我们在一项比较接受血液透析或腹膜透析作为终末期肾病治疗的肾透析患者死亡率的研究中说明了该方法。

相似文献

1
Strengthening Instrumental Variables Through Weighting.通过加权增强工具变量
Stat Biosci. 2017 Dec;9(2):320-338. doi: 10.1007/s12561-016-9149-9. Epub 2016 May 26.
9
A tutorial on the use of instrumental variables in pharmacoepidemiology.药物流行病学中工具变量使用教程。
Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):357-367. doi: 10.1002/pds.4158. Epub 2017 Feb 27.
10
Instrumental variable estimation of truncated local average treatment effects.工具变量估计截断局部平均处理效应。
PLoS One. 2021 Apr 5;16(4):e0249642. doi: 10.1371/journal.pone.0249642. eCollection 2021.

引用本文的文献

本文引用的文献

1
Near/far matching: a study design approach to instrumental variables.近/远匹配:一种工具变量的研究设计方法。
Health Serv Outcomes Res Methodol. 2012 Dec;12(4):237-253. doi: 10.1007/s10742-012-0091-0. Epub 2012 Jun 9.
6
Instrumental variable methods for causal inference.工具变量法在因果推断中的应用。
Stat Med. 2014 Jun 15;33(13):2297-340. doi: 10.1002/sim.6128. Epub 2014 Mar 6.
7
The role of peritoneal dialysis in modern renal replacement therapy.腹膜透析在现代肾脏替代治疗中的作用。
Postgrad Med J. 2013 Oct;89(1056):584-90. doi: 10.1136/postgradmedj-2012-131406. Epub 2013 Aug 1.
9
Optimal Nonbipartite Matching and Its Statistical Applications.最优非二分匹配及其统计应用。
Am Stat. 2011;65(1):21-30. doi: 10.1198/tast.2011.08294. Epub 2012 Jan 1.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验