Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada.
Center for Functional Sensor & Actuator (CFSN) and International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , Namiki 1-1 , Tsukuba 305-0044 , Japan.
ACS Appl Mater Interfaces. 2018 Nov 28;10(47):40585-40591. doi: 10.1021/acsami.8b15111. Epub 2018 Nov 15.
Mg(Si,Sn)-based compounds have shown great promise for thermoelectric (TE) applications, as they are nontoxic and comprised abundantly available constituent elements. In this work, the crystal structures and TE properties of polycrystalline materials with nominal compositions MgSiSnBi ( x = 0, 0.015, 0.030, and 0.045) and MgSi SnBi ( y = 0.30, 0.325, and 0.35) have been investigated. The electrical conductivity, Seebeck coefficient, and thermal conductivity are strongly affected by the presence of Bi. Undoped samples showed higher values of Seebeck coefficients (below 600 K), lower electrical conductivity, and lower thermal conductivity (above 600 K) in comparison to the Bi-doped samples. Furthermore, the signs of Seebeck coefficients are all negative, confirming that n-type conduction is dominant in these materials. Electrical conductivity was enhanced by increasing the Bi content up to 3% on the Si/Sn site because of the increasing amount of electron donors, and the absolute value of Seebeck coefficient decreased. When the Bi content is greater than 3%, lower zT values were obtained at 773 K. Thermal conductivity values might decrease with increasing Sn alloying for MgSi SnBi, as mass and strain fluctuation caused by alloying can effectively scatter phonons. However, a different behavior was observed in higher Sn content material, possibly because of the absence of Mg atoms at the interstitial site [Mg, on (1/2, 1/2, 1/2)] and vacancies of Mg atoms at the (1/4, 1/4, 1/4) site, as confirmed by Rietveld refinements. Outstanding figure of merit values in excess of unity were achieved with all samples, culminating in zT = 1.35.
Mg(Si,Sn)-基化合物在热电 (TE) 应用中显示出巨大的潜力,因为它们无毒且由丰富的可用组成元素组成。在这项工作中,研究了具有标称组成 MgSiSnBi(x=0、0.015、0.030 和 0.045)和 MgSiSnBi(y=0.30、0.325 和 0.35)的多晶材料的晶体结构和 TE 性能。电导率、塞贝克系数和热导率强烈受 Bi 的存在影响。未掺杂样品在 600 K 以下表现出更高的塞贝克系数(低于 600 K)、更低的电导率和更高的热导率(高于 600 K)与 Bi 掺杂样品相比。此外,塞贝克系数的符号均为负,证实这些材料中的主导传导类型为 n 型。由于电子施主数量的增加,Si/Sn 位上 Bi 含量增加到 3%时,电导率得到提高,塞贝克系数的绝对值降低。当 Bi 含量大于 3%时,在 773 K 时获得的 zT 值较低。对于 MgSiSnBi,随着 Sn 合金化的增加,热导率值可能会降低,因为合金化引起的质量和应变波动可以有效地散射声子。然而,在较高 Sn 含量的材料中观察到不同的行为,可能是因为间隙位[Mg,on(1/2,1/2,1/2)]中没有 Mg 原子和(1/4,1/4,1/4)位中 Mg 原子的空位,正如 Rietveld 精修所证实的那样。所有样品的卓越品质因数值均超过 1,最终达到 zT=1.35。