Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
Phys Rev Lett. 2018 Oct 19;121(16):160502. doi: 10.1103/PhysRevLett.121.160502.
We develop a deterministic method to generate and verify arbitrarily high NOON states of quantized vibrations (phonons), through the coupling to the internal state. We experimentally create the entangled states up to N=9 phonons in two vibrational modes of a single trapped ^{171}Yb^{+} ion. We observe an increasing phase sensitivity of the generated NOON state as the number of phonons N increases and obtain the fidelity from the contrast of the phase interference and the population of the phonon states through the two-mode projective measurement, which are significantly above the classical bound. We also measure the quantum Fisher information of the generated state and observe Heisenberg scaling in the lower bounds of phase sensitivity as N increases. Our scheme is generic and applicable to other photonic or phononic systems such as circuit QED systems or nanomechanical oscillators, which have Jaynes-Cummings-type of interactions.
我们开发了一种确定性方法,通过与内部状态耦合,生成和验证任意高的量子化振动(声子)的 NOON 态。我们通过单个囚禁的 ^{171}Yb^{+}离子两个振动模式实验上生成了多达 N=9 个声子的纠缠态。我们观察到随着声子数 N 的增加,产生的 NOON 态的相位灵敏度增加,并通过双模投影测量得到了从相位干涉对比度和声子态的布居中获得的保真度,这显著高于经典界限。我们还测量了生成态的量子 Fisher 信息,并观察到随着 N 的增加,相位灵敏度下限的海森堡缩放。我们的方案是通用的,适用于其他光子或声子系统,如电路 QED 系统或纳米机械振荡器,它们具有 Jaynes-Cummings 类型的相互作用。