Suppr超能文献

用于边缘检测的更丰富卷积特征

Richer Convolutional Features for Edge Detection.

作者信息

Liu Yun, Cheng Ming-Ming, Hu Xiaowei, Bian Jia-Wang, Zhang Le, Bai Xiang, Tang Jinhui

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1939-1946. doi: 10.1109/TPAMI.2018.2878849. Epub 2018 Oct 31.

Abstract

Edge detection is a fundamental problem in computer vision. Recently, convolutional neural networks (CNNs) have pushed forward this field significantly. Existing methods which adopt specific layers of deep CNNs may fail to capture complex data structures caused by variations of scales and aspect ratios. In this paper, we propose an accurate edge detector using richer convolutional features (RCF). RCF encapsulates all convolutional features into more discriminative representation, which makes good usage of rich feature hierarchies, and is amenable to training via backpropagation. RCF fully exploits multiscale and multilevel information of objects to perform the image-to-image prediction holistically. Using VGG16 network, we achieve state-of-the-art performance on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS). Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS. We also demonstrate the versatility of the proposed method by applying RCF edges for classical image segmentation.

摘要

边缘检测是计算机视觉中的一个基本问题。最近,卷积神经网络(CNN)极大地推动了这一领域的发展。现有的采用深度CNN特定层的方法可能无法捕捉由尺度和宽高比变化引起的复杂数据结构。在本文中,我们提出了一种使用更丰富卷积特征(RCF)的精确边缘检测器。RCF将所有卷积特征封装成更具判别力的表示,它充分利用了丰富的特征层次结构,并且适合通过反向传播进行训练。RCF充分利用对象的多尺度和多层次信息来整体执行图像到图像的预测。使用VGG16网络,我们在几个可用数据集上取得了领先的性能。在著名的BSDS500基准测试中进行评估时,我们实现了0.811的ODS F值,同时保持了较快的速度(8帧每秒)。此外,我们的快速版RCF在30帧每秒的情况下实现了0.806的ODS F值。我们还通过将RCF边缘应用于经典图像分割来展示所提出方法的通用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验