Hu Gang, Saeli Conner
Department of Computer Information Systems, SUNY Buffalo State University, Buffalo, NY 14222, USA.
Center for Computational Research, SUNY University at Buffalo, Buffalo, NY 14203, USA.
J Imaging. 2024 Feb 29;10(3):62. doi: 10.3390/jimaging10030062.
Deep edge detection is challenging, especially with the existing methods, like HED (holistic edge detection). These methods combine multiple feature side outputs (SOs) to create the final edge map, but they neglect diverse edge importance within one output. This creates a problem: to include desired edges, unwanted noise must also be accepted. As a result, the output often has increased noise or thick edges, ignoring important boundaries. To address this, we propose a new approach called the normalized Hadamard-product (NHP) operation-based deep network for edge detection. By multiplying the side outputs from the backbone network, the Hadamard-product operation encourages agreement among features across different scales while suppressing disagreed weak signals. This method produces additional Mutually Agreed Salient Edge (MASE) maps to enrich the hierarchical level of side outputs without adding complexity. Our experiments demonstrate that the NHP operation significantly improves performance, e.g., an ODS score reaching 0.818 on BSDS500, outperforming human performance (0.803), achieving state-of-the-art results in deep edge detection.
深度边缘检测具有挑战性,尤其是对于像HED(整体边缘检测)这样的现有方法而言。这些方法将多个特征侧输出(SO)组合起来以创建最终的边缘图,但它们忽略了单个输出中不同边缘的重要性。这就产生了一个问题:为了包含所需的边缘,也必须接受不需要的噪声。结果,输出通常会有更多噪声或边缘过粗,从而忽略了重要的边界。为了解决这个问题,我们提出了一种新的方法,即基于归一化哈达玛积(NHP)运算的深度网络用于边缘检测。通过将骨干网络的侧输出相乘,哈达玛积运算鼓励不同尺度的特征之间达成一致,同时抑制不一致的弱信号。该方法会生成额外的相互一致显著边缘(MASE)图,以丰富侧输出的层次级别,而不会增加复杂性。我们的实验表明,NHP运算显著提高了性能,例如在BSDS500上ODS分数达到0.818,超过了人类性能(0.803),在深度边缘检测中取得了领先成果。