Department of Radiation Oncology, Mayo Clinic in Arizona, Phoenix, AZ, 85054, USA.
Med Phys. 2019 Jan;46(1):382-393. doi: 10.1002/mp.13276. Epub 2018 Nov 30.
Intensity-modulated proton therapy (IMPT) is known to be sensitive to patient setup and range uncertainty issues. Multiple robust optimization methods have been developed to mitigate the impact of these uncertainties. Here, we propose a new robust optimization method, which provides an alternative way of robust optimization in IMPT, and is clinically practical, which will enable users to control the balance between nominal plan quality and plan robustness in a user-defined fashion.
We calculated nine individual dose distributions which corresponded to one nominal and eight extreme scenarios caused by patient setup and proton beam's range uncertainties. For each voxel, the normalized dose interval (NDI) is defined as the full dose range variation divided by the maximum dose in all uncertainty scenarios (NDI = [max - min dose]/max dose), which was then used to calculate the normalized dose interval volume histogram (NDIVH) curves. The areas under the NDIVH curves were used to quantify plan robustness. A normalized dose interval volume constraint (NDIVC) applied to the target was incorporated to specify the desired robustness which was user-defined. Users could then explore the trade-off between nominal plan quality and plan robustness by adjusting the position of the NDIVCs on the NDIVH curves freely. We benchmarked our method using one lung, five head and neck (H&N), and three prostate cases by comparing our results to those derived using the voxel-wise worst-case robust optimization.
Using the benchmark cases, our new method achieved quality IMPT plans comparable to those derived from the voxel-wise worst-case robust optimization for both nominal plan quality and plan robustness in general; even more conformal and more homogeneous target dose distributions in some cases, if proper NDIVCs were applied. The AUC under NDIVH, as a precise quantitative index of plan robustness, was consistent with DVH bandwidths. Additionally, we demonstrated the feasibility of adjusting the position of NDIVCs in the NDIVH curves which allowed users to explore the trade-off between nominal plan quality and plan robustness.
The NDIVH-based robust optimization method provided a novel and individualized way of robust optimization in IMPT, and enables users to adjust the balance between nominal plan quality and plan robustness in a user-defined fashion. This method is applicable for continued improvement and developing the next generation of IMPT planning algorithms in the future.
调强质子治疗(IMPT)对患者摆位和射程不确定性问题较为敏感。已经开发出多种稳健优化方法来减轻这些不确定性的影响。在这里,我们提出了一种新的稳健优化方法,它为 IMPT 的稳健优化提供了一种替代方法,并且在临床上切实可行,使用户能够以用户定义的方式控制名义计划质量和计划稳健性之间的平衡。
我们计算了九个单独的剂量分布,它们对应于一个名义情况和八个由患者摆位和质子束射程不确定性引起的极端情况。对于每个体素,归一化剂量区间(NDI)定义为全剂量范围变化除以所有不确定性情况下的最大剂量(NDI=[最大剂量-最小剂量]/最大剂量),然后用于计算归一化剂量区间体积直方图(NDIVH)曲线。NDIVH 曲线下的面积用于量化计划稳健性。将归一化剂量区间体积约束(NDIVC)应用于目标,以指定所需的稳健性,这是用户定义的。用户可以通过自由调整 NDIVC 在 NDIVH 曲线上的位置来探索名义计划质量和计划稳健性之间的权衡。我们使用一个肺部、五个头颈部(H&N)和三个前列腺病例对我们的方法进行了基准测试,通过将我们的结果与基于体素的最坏情况稳健优化得出的结果进行比较。
使用基准病例,我们的新方法在名义计划质量和计划稳健性方面为肺部、头颈部和前列腺病例都实现了与基于体素的最坏情况稳健优化相当的高质量 IMPT 计划;在某些情况下,如果应用适当的 NDIVC,则可以实现更适形和更均匀的目标剂量分布。NDIVH 下的 AUC 作为计划稳健性的精确定量指标与 DVH 带宽一致。此外,我们展示了调整 NDIVH 曲线中 NDIVC 位置的可行性,这使得用户能够探索名义计划质量和计划稳健性之间的权衡。
基于 NDIVH 的稳健优化方法为 IMPT 的稳健优化提供了一种新颖的个体化方法,并允许用户以用户定义的方式调整名义计划质量和计划稳健性之间的平衡。该方法适用于继续改进和开发未来的下一代 IMPT 计划算法。