Suppr超能文献

强度调制质子治疗的鲁棒优化。

Robust optimization of intensity modulated proton therapy.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Med Phys. 2012 Feb;39(2):1079-91. doi: 10.1118/1.3679340.

Abstract

PURPOSE

Intensity modulated proton therapy (IMPT) is highly sensitive to range uncertainties and uncertainties caused by setup variation. The conventional inverse treatment planning of IMPT optimized based on the planning target volume (PTV) is not often sufficient to ensure robustness of treatment plans. In this paper, a method that takes the uncertainties into account during plan optimization is used to mitigate the influence of uncertainties in IMPT.

METHODS

The authors use the so-called "worst-case robust optimization" to render IMPT plans robust in the face of uncertainties. For each iteration, nine different dose distributions are computed-one each for ± setup uncertainties along anteroposterior (A-P), lateral (R-L) and superior-inferior (S-I) directions, for ± range uncertainty, and the nominal dose distribution. The worst-case dose distribution is obtained by assigning the lowest dose among the nine doses to each voxel in the clinical target volume (CTV) and the highest dose to each voxel outside the CTV. Conceptually, the use of worst-case dose distribution is similar to the dose distribution achieved based on the use of PTV in traditional planning. The objective function value for a given iteration is computed using this worst-case dose distribution. The objective function used has been extended to further constrain the target dose inhomogeneity.

RESULTS

The worst-case robust optimization method is applied to a lung case, a skull base case, and a prostate case. Compared with IMPT plans optimized using conventional methods based on the PTV, our method yields plans that are considerably less sensitive to range and setup uncertainties. An interesting finding of the work presented here is that, in addition to reducing sensitivity to uncertainties, robust optimization also leads to improved optimality of treatment plans compared to the PTV-based optimization. This is reflected in reduction in plan scores and in the lower normal tissue doses for the same coverage of the target volume when subjected to uncertainties.

CONCLUSIONS

The authors find that the worst-case robust optimization provides robust target coverage without sacrificing, and possibly even improving, the sparing of normal tissues. Our results demonstrate the importance of robust optimization. The authors assert that all IMPT plans should be robustly optimized.

摘要

目的

调强质子治疗(IMPT)对射程不确定性和摆位变化引起的不确定性非常敏感。基于计划靶区(PTV)的常规 IMPT 逆向治疗计划优化通常不足以确保治疗计划的稳健性。在本文中,使用一种在计划优化过程中考虑不确定性的方法来减轻 IMPT 中不确定性的影响。

方法

作者使用所谓的“最坏情况鲁棒优化”来使 IMPT 计划在面对不确定性时具有鲁棒性。对于每个迭代,计算九个不同的剂量分布 - 每个沿前后(AP)、左右(RL)和上下(SI)方向的设置不确定性、± 射程不确定性以及名义剂量分布。最坏情况下的剂量分布是通过将九个剂量中的最低剂量分配给临床靶区(CTV)中的每个体素,将最高剂量分配给 CTV 之外的每个体素来获得的。从概念上讲,使用最坏情况剂量分布类似于在传统计划中基于 PTV 使用的剂量分布。对于给定的迭代,使用此最坏情况剂量分布计算目标函数值。所使用的目标函数已扩展到进一步约束目标剂量不均匀性。

结果

最坏情况鲁棒优化方法应用于肺病例、颅底病例和前列腺病例。与基于 PTV 的常规方法优化的 IMPT 计划相比,我们的方法生成的计划对射程和设置不确定性的敏感性要低得多。本研究的一个有趣发现是,除了降低对不确定性的敏感性外,鲁棒优化还导致与基于 PTV 的优化相比,治疗计划的优化程度得到提高。这反映在计划评分降低和在目标体积覆盖相同的情况下正常组织剂量降低。

结论

作者发现最坏情况鲁棒优化在不牺牲甚至可能改善正常组织保护的情况下提供了稳健的靶区覆盖。我们的结果证明了鲁棒优化的重要性。作者断言,所有 IMPT 计划都应该进行鲁棒优化。

相似文献

引用本文的文献

本文引用的文献

1

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验