Offutt Tavina L, Ieong Pek U, Demir Özlem, Amaro Rommie E
Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92092-0340 , United States.
Biochemistry. 2018 Nov 20;57(46):6528-6537. doi: 10.1021/acs.biochem.8b01005. Epub 2018 Nov 12.
The "guardian of the genome", p53, functions as a tumor suppressor that responds to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Mutation of p53 disrupts its tumor suppressor function, leading to various types of human cancers. One particular mutant, R175H, is a structural mutant that inactivates the DNA damage response pathway and acquires oncogenic functions that promotes both cancer and drug resistance. Our current work aims to understand how p53 wild-type function is disrupted due to the R175H mutation. We use a series of atomistic integrative models built previously from crystal structures of the full-length p53 tetramer bound to DNA and model the R175H mutant using in silico site-directed mutagenesis. Explicitly solvated all-atom molecular dynamics (MD) simulations on wild-type and the R175H mutant p53 reveal insights into how wild-type p53 searches and recognizes DNA, and how this mechanism is disrupted as a result of the R175H mutation. Specifically, our work reveals the optimal quaternary DNA binding mode of the DNA binding domain and shows how this binding mode is altered via symmetry loss as a result of the R175H mutation, indicating a recognition mechanism that is reminiscent of the asymmetry seen in wild type p53 binding to nonspecific genomic elements. Altogether our work sheds new light into the hitherto unseen molecular mechanisms governing transcription factor, DNA recognition.
“基因组守护者”p53作为一种肿瘤抑制因子发挥作用,它通过诱导细胞周期停滞、衰老或凋亡来应对DNA损伤、缺氧和肿瘤形成等细胞应激源。p53的突变会破坏其肿瘤抑制功能,导致多种类型的人类癌症。一种特定的突变体R175H是一种结构突变体,它会使DNA损伤反应通路失活,并获得促进癌症和耐药性的致癌功能。我们目前的工作旨在了解p53野生型功能是如何因R175H突变而被破坏的。我们使用了一系列先前根据与DNA结合的全长p53四聚体的晶体结构构建的原子水平整合模型,并通过计算机定点诱变对R175H突变体进行建模。对野生型和R175H突变体p53进行明确溶剂化的全原子分子动力学(MD)模拟,揭示了野生型p53如何搜索和识别DNA,以及这种机制如何因R175H突变而被破坏。具体而言,我们的工作揭示了DNA结合结构域的最佳四级DNA结合模式,并展示了这种结合模式如何因R175H突变导致的对称性丧失而改变,这表明了一种类似于野生型p53与非特异性基因组元件结合时所见不对称性的识别机制。我们的工作共同为迄今为止尚未见过的转录因子DNA识别分子机制提供了新的线索。