文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

风险环境中的泛化与搜索。

Generalization and Search in Risky Environments.

机构信息

Department of Psychology, Harvard University.

Center for Adaptive Rationality, Max Planck Institute for Human Development.

出版信息

Cogn Sci. 2018 Nov;42(8):2592-2620. doi: 10.1111/cogs.12695. Epub 2018 Nov 2.


DOI:10.1111/cogs.12695
PMID:30390325
Abstract

How do people pursue rewards in risky environments, where some outcomes should be avoided at all costs? We investigate how participant search for spatially correlated rewards in scenarios where one must avoid sampling rewards below a given threshold. This requires not only the balancing of exploration and exploitation, but also reasoning about how to avoid potentially risky areas of the search space. Within risky versions of the spatially correlated multi-armed bandit task, we show that participants' behavior is aligned well with a Gaussian process function learning algorithm, which chooses points based on a safe optimization routine. Moreover, using leave-one-block-out cross-validation, we find that participants adapt their sampling behavior to the riskiness of the task, although the underlying function learning mechanism remains relatively unchanged. These results show that participants can adapt their search behavior to the adversity of the environment and enrich our understanding of adaptive behavior in the face of risk and uncertainty.

摘要

人们在风险环境中如何追求奖励,而在这种环境中,有些结果应该不惜一切代价避免?我们研究了参与者在必须避免采样低于给定阈值的奖励的场景中如何搜索空间相关奖励。这不仅需要平衡探索和利用,还需要推理如何避免搜索空间中潜在的危险区域。在风险版本的空间相关多臂老虎机任务中,我们表明参与者的行为与高斯过程函数学习算法很好地对齐,该算法根据安全优化例程选择点。此外,通过使用留一区块交叉验证,我们发现参与者根据任务的风险程度调整其采样行为,尽管基础的函数学习机制相对不变。这些结果表明,参与者可以调整他们的搜索行为以适应环境的逆境,并丰富我们对面对风险和不确定性时的自适应行为的理解。

相似文献

[1]
Generalization and Search in Risky Environments.

Cogn Sci. 2018-11-2

[2]
Similarities and differences in spatial and non-spatial cognitive maps.

PLoS Comput Biol. 2020-9-9

[3]
Finding structure in multi-armed bandits.

Cogn Psychol. 2020-6

[4]
Putting bandits into context: How function learning supports decision making.

J Exp Psychol Learn Mem Cogn. 2018-6

[5]
Overtaking method based on sand-sifter mechanism: Why do optimistic value functions find optimal solutions in multi-armed bandit problems?

Biosystems. 2015-9

[6]
Uncertainty and exploration in a restless bandit problem.

Top Cogn Sci. 2015-4

[7]
Searching for Rewards Like a Child Means Less Generalization and More Directed Exploration.

Psychol Sci. 2019-10-25

[8]
Development of directed and random exploration in children.

Dev Sci. 2021-7

[9]
It's new, but is it good? How generalization and uncertainty guide the exploration of novel options.

J Exp Psychol Gen. 2020-10

[10]
Generalization guides human exploration in vast decision spaces.

Nat Hum Behav. 2018-11-12

引用本文的文献

[1]
Testing the convergent validity, domain generality, and temporal stability of selected measures of people's tendency to explore.

Nat Commun. 2024-9-4

[2]
Variability and harshness shape flexible strategy-use in support of the constrained flexibility framework.

Sci Rep. 2024-3-27

[3]
Naturalistic reinforcement learning.

Trends Cogn Sci. 2024-2

[4]
Developmental changes in exploration resemble stochastic optimization.

Nat Hum Behav. 2023-11

[5]
Anxiety as a disorder of uncertainty: implications for understanding maladaptive anxiety, anxious avoidance, and exposure therapy.

Cogn Affect Behav Neurosci. 2023-6

[6]
Time pressure changes how people explore and respond to uncertainty.

Sci Rep. 2022-3-8

[7]
Efficient Lévy walks in virtual human foraging.

Sci Rep. 2021-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索