Suppr超能文献

探索过程中的发展变化类似于随机优化。

Developmental changes in exploration resemble stochastic optimization.

机构信息

Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany.

Attention and Affect Lab, University of Tübingen, Tübingen, Germany.

出版信息

Nat Hum Behav. 2023 Nov;7(11):1955-1967. doi: 10.1038/s41562-023-01662-1. Epub 2023 Aug 17.

Abstract

Human development is often described as a 'cooling off' process, analogous to stochastic optimization algorithms that implement a gradual reduction in randomness over time. Yet there is ambiguity in how to interpret this analogy, due to a lack of concrete empirical comparisons. Using data from n = 281 participants ages 5 to 55, we show that cooling off does not only apply to the single dimension of randomness. Rather, human development resembles an optimization process of multiple learning parameters, for example, reward generalization, uncertainty-directed exploration and random temperature. Rapid changes in parameters occur during childhood, but these changes plateau and converge to efficient values in adulthood. We show that while the developmental trajectory of human parameters is strikingly similar to several stochastic optimization algorithms, there are important differences in convergence. None of the optimization algorithms tested were able to discover reliably better regions of the strategy space than adult participants on this task.

摘要

人类发展通常被描述为一个“冷却”过程,类似于随机优化算法,随着时间的推移逐渐减少随机性。然而,由于缺乏具体的经验比较,如何解释这种类比还存在模糊性。我们使用来自 281 名年龄在 5 岁至 55 岁之间的参与者的数据表明,冷却不仅适用于随机性的单一维度。相反,人类发展类似于多个学习参数的优化过程,例如,奖励泛化、不确定性导向的探索和随机温度。参数的快速变化发生在儿童时期,但这些变化趋于平稳并在成年期收敛到有效值。我们表明,尽管人类参数的发展轨迹与几种随机优化算法非常相似,但在收敛方面存在重要差异。在这项任务中,没有一个测试的优化算法能够比成年参与者更可靠地发现策略空间中的更好区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc2/10663152/d7e8fd2d8acc/41562_2023_1662_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验