Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India.
Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India; Indian Institute of Science Education and Research, Berhampur, Odisha, 760010, India.
Biochem Biophys Res Commun. 2018 Dec 2;506(4):862-867. doi: 10.1016/j.bbrc.2018.10.187. Epub 2018 Nov 2.
Infantile cataracts constitute one of the most important causes of childhood blindness worldwide. Human γS-crystallin is the most abundant protein in the eye lens cortex. A missense mutant of human γS-crystallin, Y67N (abbreviated hereafter as γS-Y67N) is recently reported to be associated with dominant infantile cataracts. To understand the structural basis for γS-Y67N to cause lens opacification, we constructed, expressed and purified γS-Y67N and its wild-type (abbreviated hereafter as γS-WT) and studied the structural and functional differences between them in solution using circular dichroism (CD), differential scanning calorimetry (DSC), fluorescence spectroscopy and extrinsic spectral probes. Extensive equilibrium characterization indicate that replacement of the highly conserved Tyr at 67th position by Asn distorts the conserved Tyr corner at the second Greek key motif in the N-terminal domain (NTD) and leads to substantial loss of structural stability. Our intrinsic fluorescence quenching results reveal differential in-vitro refolding kinetics identifying partially folded kinetic intermediates for both proteins. Extrinsic fluorescence studies further reveal loosening up of the compact structure of γS-crystallin upon mutation associated with enhanced aggregation. As Ca homeostasis is a crucial regulator of lens transparency, we further investigated the Ca-binding properties of γS-WT and γS-Y67N by isothermal titration calorimetry (ITC) to identify lens Ca distribution in health and in disease. Overall, our results highlight the vital role of conserved Tyr corners in stabilizing Greek key motifs and provide useful structural and functional insights into the mechanism of cataract formation in humans.
婴儿白内障是全球儿童失明的最重要原因之一。人γS-晶体蛋白是眼睛晶状体皮质中含量最丰富的蛋白质。最近有报道称,人γS-晶体蛋白的一个错义突变体 Y67N(简称γS-Y67N)与显性婴儿白内障有关。为了了解γS-Y67N 导致晶状体混浊的结构基础,我们构建、表达和纯化了γS-Y67N 及其野生型(简称γS-WT),并使用圆二色性(CD)、差示扫描量热法(DSC)、荧光光谱和外源性光谱探针在溶液中研究了它们之间的结构和功能差异。广泛的平衡特性表明,在高度保守的第 67 位由 Asn 取代 Tyr 会扭曲 N 端结构域(NTD)中第二个希腊关键模体的保守 Tyr 角,并导致结构稳定性的显著丧失。我们的本征荧光猝灭结果揭示了两种蛋白质在体外复性动力学上的差异,确定了部分折叠的动力学中间产物。外源性荧光研究进一步揭示了突变导致γS-晶体蛋白紧密结构的松弛,伴随着增强的聚集。由于钙稳态是晶状体透明度的关键调节剂,我们进一步通过等温滴定量热法(ITC)研究了γS-WT 和 γS-Y67N 的钙结合特性,以确定健康和疾病状态下的晶状体钙分布。总的来说,我们的结果强调了保守的 Tyr 角在稳定希腊关键模体中的重要作用,并为人类白内障形成的机制提供了有用的结构和功能见解。