Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India.
Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, 500107, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India; Indian Institute of Science Education and Research, Berhampur, Odisha, 760010, India.
Biochem Biophys Res Commun. 2019 Apr 9;511(3):679-684. doi: 10.1016/j.bbrc.2019.02.124. Epub 2019 Feb 28.
Single point mutants of human γS-crystallin cause dominant congenital cataracts, a recent one of which involves the substitution of highly conserved glycine at 57th position with a bulkier tryptophan. Our high-resolution 3D structure of this G57W mutant (abbreviated hereafter as γS-G57W), reported recently revealed site-specific structural perturbations with higher aggregation and lower stability compared to its wild-type; a structural feature associated with important functional and therapeutic consequences. In this communication, we report for the first time, residue resolved conformational dynamics in both γS-WT and γS-G57W using solution NMR spectroscopy, and suggest how these differences could crucially affect the biochemistry of the mutant. Guided by our critical structural investigations, extensive conformational dynamics and biophysical studies presented here show that loss of structural stability arises from enhanced dynamics in Greek key motif 2 inducing flexibility in the N-terminal domain as opposed to its structurally unperturbed C-terminal counterpart. NMR spectral density correlations and internal dynamics comparisons with the wild-type suggest that the overall thermodynamic instability propagates from the mutated N-terminal β4-β5 loop providing a residue level understanding of the structural changes associated with this early onset of lens opacification. Our results highlight the vital role of conserved Greek key motifs in conferring structural stability to crystallins and provide crucial molecular insights into crystallin aggregation in the eye lens, which triggers cataract formation in children. Overall, this critical study provides a residue level understanding of how conformational changes affect the structure and function of crystallins in particular and proteins in general, during health and disease.
人类 γS-晶体蛋白的单点突变会导致显性先天性白内障,最近的一个突变涉及高度保守的第 57 位甘氨酸被更大的色氨酸取代。我们最近报道的这种 G57W 突变体(简称 γS-G57W)的高分辨率 3D 结构显示,与野生型相比,该突变体存在特定的结构扰动,聚集性更高,稳定性更低;这一结构特征与重要的功能和治疗后果有关。在本通讯中,我们首次使用溶液 NMR 光谱报告了 γS-WT 和 γS-G57W 中的残基分辨构象动力学,并提出了这些差异如何可能对突变体的生物化学产生关键影响。在我们的关键结构研究的指导下,这里提出的广泛构象动力学和生物物理研究表明,结构稳定性的丧失源于希腊钥匙模体 2 中增强的动力学,导致 N 端结构域的灵活性,而不是其结构未受干扰的 C 端结构域。与野生型的 NMR 光谱密度相关和内部动力学比较表明,整体热力学不稳定性源自突变的 N 端 β4-β5 环,为与这种早期白内障发生相关的结构变化提供了残基水平的理解。我们的研究结果强调了保守的希腊钥匙模体在赋予晶体蛋白结构稳定性方面的重要作用,并为眼晶状体中晶体蛋白聚集提供了关键的分子见解,这会导致儿童白内障的形成。总体而言,这项关键性研究提供了一个残基水平的理解,即构象变化如何影响晶体蛋白,特别是蛋白质在健康和疾病中的结构和功能。