Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
Math Biosci. 2019 Jan;307:13-24. doi: 10.1016/j.mbs.2018.10.009. Epub 2018 Nov 1.
Coffee rust is one of the main diseases that affect coffee plantations worldwide (Cressey, 2013 [10]). This causes an important economic impact in the coffee production industry in countries where coffee is an important part of the economy. A common method for combating this disease is using copper hydroxide as a fungicide, which can have damaging effects both on the coffee tree and on human health (Haddad et al., 2013 [13]). A novel method for biological control of coffee rust using bacteria has been proven to be an effective alternative to copper hydroxide fungicides as anti-fungal compounds (Haddad et al., 2009 [12]). In this paper, we develop and explore a spatial stochastic model for this interaction in a coffee plantation. We analyze equilibria for specific control strategies, as well as compute the basic reproductive number, R, of individual coffee trees, conditions for local and global stability under specific conditions, parameter estimation of key parameters, as well as sensitivity analysis, and numerical experiments under local and global control strategies for key scenarios.
咖啡锈病是影响全球咖啡种植园的主要病害之一(Cressey,2013[10])。在咖啡是经济重要组成部分的国家,这种病害会对咖啡生产行业造成重大的经济影响。防治这种病害的常用方法是使用氢氧化铜作为杀菌剂,这对咖啡树和人类健康都有破坏性影响(Haddad 等人,2013[13])。使用细菌进行咖啡锈病的生物防治是一种替代氢氧化铜杀菌剂的有效方法,因为这些细菌是抗真菌化合物(Haddad 等人,2009[12])。在本文中,我们针对咖啡种植园中这种相互作用开发并探讨了一个空间随机模型。我们分析了特定控制策略的平衡点,以及计算了个体咖啡树的基本繁殖数 R,在特定条件下局部和全局稳定性的条件,关键参数的参数估计,以及局部和全球控制策略下的敏感性分析和数值实验的关键场景。