Suppr超能文献

使用定量多参数磁共振成像分析,表观扩散系数作为初治胶质母细胞瘤患者生存的预测生物标志物

Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling.

作者信息

Kim Byung Sup, Kim Sung Tae, Kim Joon Hyung, Seol Ho Jun, Nam Do-Hyun, Shin Hyung Jin, Lee Jung-Il, Kong Doo-Sik

机构信息

Department of Neurosurgery, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea.

Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

World Neurosurg. 2019 Feb;122:e812-e820. doi: 10.1016/j.wneu.2018.10.151. Epub 2018 Nov 1.

Abstract

BACKGROUND

The purpose of the present study was to investigate whether quantitative radiomic profiles extracted from multiparametric magnetic resonance (MR) profiles can predict the clinical outcomes for patients with newly diagnosed glioblastoma (GBM) before therapy.

METHODS

MR images from 93 treatment-naive patients with newly diagnosed GBM were analyzed. Through tumor segmentation, we selected 36 radiomic features. Using the unsupervised clustering method, we classified our patients into 2 groups and investigated their overall survival (OS) using Kaplan-Meier analyses.

RESULTS

Among the 36 radiomic features, the apparent diffusion coefficient (ADC) histogram parameters demonstrated a significant association with OS (P < 0.05). To validate this finding, unsupervised clustering analysis revealed 3 clusters with similar radiomic expression patterns. Clusters 1 and 2 showed a significant correlation with the radiomic features representing the tumor volume, and cluster 2 also showed a significant correlation with relative cerebral blood volume values. In contrast, cluster 3 showed an inverse relationship with cluster 2, mainly representing the radiomic features indicating the ADC and mean transit time. Although no statistically significant difference was found in OS between cluster 1 plus 2 and cluster 3, cluster 3 showed a trend toward longer OS compared with cluster 1 plus 2 (P = 0.067). After stratification by methylation status and radiomic feature clustering, patients with methylated O-methylguanine DNA methyltransferase and those included in cluster 3 had significantly longer OS (P = 0.029).

CONCLUSIONS

ADC histogram parameters are feasible prognostic biomarkers to predict the survival of patients with treatment-naive GBM. Quantitative MR profiles can predict the clinical outcomes of patients with GBM before therapy.

摘要

背景

本研究的目的是调查从多参数磁共振(MR)图像中提取的定量放射组学特征能否在治疗前预测新诊断的胶质母细胞瘤(GBM)患者的临床结局。

方法

分析了93例未经治疗的新诊断GBM患者的MR图像。通过肿瘤分割,我们选择了36个放射组学特征。使用无监督聚类方法,我们将患者分为两组,并使用Kaplan-Meier分析研究了他们的总生存期(OS)。

结果

在36个放射组学特征中,表观扩散系数(ADC)直方图参数与OS显著相关(P < 0.05)。为了验证这一发现,无监督聚类分析揭示了3个具有相似放射组学表达模式的聚类。聚类1和聚类2与代表肿瘤体积的放射组学特征显著相关,聚类2也与相对脑血容量值显著相关。相比之下,聚类3与聚类2呈负相关,主要代表表明ADC和平均通过时间的放射组学特征。虽然聚类1加聚类2和聚类3之间在OS上没有发现统计学上的显著差异,但聚类3与聚类1加聚类2相比显示出OS更长的趋势(P = 0.067)。在按甲基化状态和放射组学特征聚类进行分层后,O-甲基鸟嘌呤DNA甲基转移酶甲基化的患者和聚类3中的患者的OS显著更长(P = 0.029)。

结论

ADC直方图参数是预测未经治疗的GBM患者生存的可行预后生物标志物。定量MR图像可以预测GBM患者治疗前的临床结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验