Suppr超能文献

用于预测胶质瘤患者术后3年无进展生存期和总生存期的机器学习分类器。

Machine learning classifiers for predicting 3-year progression-free survival and overall survival in patients with gliomas after surgery.

作者信息

Zhang Bin, Yan Jing, Chen Weiqi, Dong Yuhao, Zhang Lu, Mo Xiaokai, Chen Qiuying, Cheng Jingliang, Liu Xianzhi, Wang Weiwei, Zhang Zhenyu, Zhang Shuixing

机构信息

Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.

Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

J Cancer. 2021 Jan 15;12(6):1604-1615. doi: 10.7150/jca.52183. eCollection 2021.

Abstract

To develop machine-learning based models to predict the progression-free survival (PFS) and overall survival (OS) in patients with gliomas and explore the effect of different feature selection methods on the prediction. We included 505 patients (training cohort, n = 354; validation cohort, n = 151) with gliomas between January 1, 2011 and December 31, 2016. The clinical, neuroimaging, and molecular genetic data of patients were retrospectively collected. The multi-causes discovering with structure learning (McDSL) algorithm, least absolute shrinkage and selection operator regression (LASSO), and Cox proportional hazards regression model were employed to discover the predictors for 3-year PFS and OS, respectively. Eight machine learning classifiers with 5-fold cross-validation were developed to predict 3-year PFS and OS. The area under the curve (AUC) was used to evaluate the prognostic performance of classifiers. McDSL identified four causal factors (tumor location, WHO grade, histologic type, and molecular genetic group) for 3-year PFS and OS, whereas LASSO and Cox identified wide-range number of factors associated with 3-year PFS and OS. The performance of each machine learning classifier based on McDSL, LASSO, and Cox was not significantly different. Logistic regression yielded the optimal performance in predicting 3-year PFS based on the McDSL (AUC, 0.872, 95% confidence interval [CI]: 0.828-0.916) and 3-year OS based on the LASSO (AUC, 0.901, 95% CI: 0.861-0.940). McDSL is more reproducible than LASSO and Cox model in the feature selection process. Logistic regression model may have the highest performance in predicting 3-year PFS and OS of gliomas.

摘要

开发基于机器学习的模型以预测胶质瘤患者的无进展生存期(PFS)和总生存期(OS),并探索不同特征选择方法对预测的影响。我们纳入了2011年1月1日至2016年12月31日期间的505例胶质瘤患者(训练队列,n = 354;验证队列,n = 151)。回顾性收集患者的临床、神经影像和分子遗传学数据。采用多病因结构学习发现算法(McDSL)、最小绝对收缩和选择算子回归(LASSO)以及Cox比例风险回归模型分别发现3年PFS和OS的预测因素。开发了8个采用5折交叉验证的机器学习分类器来预测3年PFS和OS。曲线下面积(AUC)用于评估分类器的预后性能。McDSL识别出3年PFS和OS的4个因果因素(肿瘤位置、世界卫生组织分级、组织学类型和分子遗传学组),而LASSO和Cox识别出与3年PFS和OS相关的大量因素。基于McDSL、LASSO和Cox的每个机器学习分类器的性能无显著差异。基于McDSL预测3年PFS(AUC,0.872,95%置信区间[CI]:0.828 - 0.916)和基于LASSO预测3年OS(AUC,0.901,95%CI:0.861 - 0.940)时,逻辑回归产生了最佳性能。在特征选择过程中,McDSL比LASSO和Cox模型更具可重复性。逻辑回归模型在预测胶质瘤的3年PFS和OS方面可能具有最高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/137e/7890310/710e905d47f6/jcav12p1604g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验