Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China.
Mitochondrion. 2019 May;46:380-392. doi: 10.1016/j.mito.2018.10.002. Epub 2018 Nov 1.
Cardiac ischemia and reperfusion (IR) injury induces excessive emission of deleterious reactive O and N species (ROS/RNS), including the non-radical oxidant peroxynitrite (ONOO) that can cause mitochondria dysfunction and cell death. In this study, we explored whether IR injury in isolated hearts induces tyrosine nitration of adenine nucleotide translocase (ANT) and alters its interaction with the voltage-dependent anion channel 1 (VDAC1). We found that IR injury induced tyrosine nitration of ANT and that exposure of isolated cardiac mitochondria to ONOO induced ANT tyrosine, Y, nitration. The exposure of isolated cardiac mitochondria to ONOO also led ANT to form high molecular weight proteins and dissociation of ANT from VDAC1. We found that IR injury in isolated hearts, hypoxic injury in H9c2 cells, and ONOO treatment of H9c2 cells and isolated mitochondria, each decreased mitochondrial bound-hexokinase II (HK II), which suggests that ONOO caused HK II to dissociate from mitochondria. Moreover, we found that mitochondria exposed to ONOO induced VDAC1 oligomerization which may decrease its binding with HK II. We have reported that ONOO produced during cardiac IR injury induced tyrosine nitration of VDAC1, which resulted in conformational changes of the protein and increased channel conductance associated with compromised cardiac function on reperfusion. Thus, our results imply that ONOO produced during IR injury and hypoxic stress impeded HK II association with VDAC1. ONOO exposure nitrated mitochondrial proteins and also led to cytochrome c (cyt c) release from mitochondria. In addition, in isolated mitochondria exposed to ONOO or obtained after IR, there was significant compromise in mitochondrial respiration and delayed repolarization of membrane potential during oxidative (ADP) phosphorylation. Taken together, ONOO produced during cardiac IR injury can nitrate tyrosine residues of two key mitochondrial membrane proteins involved in bioenergetics and energy transfer to contribute to mitochondrial and cellular dysfunction.
心肌缺血再灌注 (IR) 损伤会导致有害的活性氧和氮物质 (ROS/RNS) 的过度释放,包括非自由基氧化剂过氧亚硝酸盐 (ONOO),它可导致线粒体功能障碍和细胞死亡。在本研究中,我们探讨了分离心脏的 IR 损伤是否会诱导腺嘌呤核苷酸转运蛋白 (ANT) 的酪氨酸硝化,并改变其与电压依赖性阴离子通道 1 (VDAC1) 的相互作用。我们发现 IR 损伤诱导了 ANT 的酪氨酸硝化,并且 ONOO 暴露于分离的心肌线粒体诱导了 ANT 酪氨酸 Y 的硝化。ONOO 暴露于分离的心肌线粒体还导致 ANT 形成高分子量蛋白并与 VDAC1 解离。我们发现,分离心脏中的 IR 损伤、H9c2 细胞中的缺氧损伤以及 ONOO 处理 H9c2 细胞和分离的线粒体,都使线粒体结合型己糖激酶 II (HK II) 减少,这表明 ONOO 导致 HK II 从线粒体解离。此外,我们发现暴露于 ONOO 的线粒体诱导了 VDAC1 的寡聚化,这可能会降低其与 HK II 的结合。我们已经报道过,在心脏 IR 损伤期间产生的 ONOO 诱导了 VDAC1 的酪氨酸硝化,这导致了蛋白质构象的变化,并增加了与再灌注时心脏功能受损相关的通道电导。因此,我们的结果表明,IR 损伤和缺氧应激期间产生的 ONOO 会阻碍 HK II 与 VDAC1 的结合。ONOO 暴露使线粒体蛋白硝化,并导致细胞色素 c (cyt c) 从线粒体释放。此外,在暴露于 ONOO 或 IR 后的分离线粒体中,在线粒体呼吸和膜电位复极化期间存在明显的氧化 (ADP) 磷酸化延迟。综上所述,在心脏 IR 损伤期间产生的 ONOO 可以硝化参与生物能学和能量传递的两个关键线粒体膜蛋白的酪氨酸残基,导致线粒体和细胞功能障碍。