Suppr超能文献

常规实验室检查结果和生命体征的组合可在无需医生评估的情况下预测晚期癌症患者的生存情况:分数多项式模型。

A combination of routine laboratory findings and vital signs can predict survival of advanced cancer patients without physician evaluation: a fractional polynomial model.

机构信息

Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.

Department of Preventive Medicine and Public Health, School of Medicine, Keio University 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan.

出版信息

Eur J Cancer. 2018 Dec;105:50-60. doi: 10.1016/j.ejca.2018.09.037. Epub 2018 Nov 2.

Abstract

INTRODUCTION

There have been no reports about predicting survival of patients with advanced cancer constructed entirely with objective variables. We aimed to develop a prognostic model based on laboratory findings and vital signs using a fractional polynomial (FP) model.

METHODS

A multicentre prospective cohort study was conducted at 58 specialist palliative care services in Japan from September 2012 to April 2014. Eligible patients were older than 20 years and had advanced cancer. We developed models for predicting 7-day, 14-day, 30-day, 56-day and 90-day survival by using the FP modelling method.

RESULTS

Data from 1039 patients were analysed to develop each prognostic model (Objective Prognostic Index for advanced cancer [OPI-AC]). All models included the heart rate, urea and albumin, while some models included the respiratory rate, creatinine, C-reactive protein, lymphocyte count, neutrophil count, total bilirubin, lactate dehydrogenase and platelet/lymphocyte ratio. The area under the curve was 0.77, 0.81, 0.90, 0.90 and 0.92 for the 7-day, 14-day, 30-day, 56-day and 90-day model, respectively. The accuracy of the OPI-AC predicting 30-day, 56-day and 90-day survival was significantly higher than that of the Palliative Prognostic Score or the Prognosis in Palliative Care Study model, which are based on a combination of symptoms and physician estimation.

CONCLUSION

We developed highly accurate prognostic indexes for predicting the survival of patients with advanced cancer from objective variables alone, which may be useful for end-of-life management. The FP modelling method could be promising for developing other prognostic models in future research.

摘要

简介

目前尚无关于完全使用客观变量预测晚期癌症患者生存情况的报道。我们旨在通过分数多项式(FP)模型,利用实验室检查结果和生命体征建立一种预后模型。

方法

2012 年 9 月至 2014 年 4 月,在日本 58 个专科姑息治疗服务中心进行了一项多中心前瞻性队列研究。纳入标准为年龄大于 20 岁且患有晚期癌症的患者。我们使用 FP 建模方法建立了预测 7 天、14 天、30 天、56 天和 90 天生存率的模型。

结果

对 1039 例患者的数据进行了分析,以开发每个预后模型(晚期癌症客观预后指数 [OPI-AC])。所有模型均包含心率、尿素和白蛋白,部分模型还包含呼吸频率、肌酐、C 反应蛋白、淋巴细胞计数、中性粒细胞计数、总胆红素、乳酸脱氢酶和血小板/淋巴细胞比值。7 天、14 天、30 天、56 天和 90 天模型的曲线下面积分别为 0.77、0.81、0.90、0.90 和 0.92。OPI-AC 预测 30 天、56 天和 90 天生存率的准确性明显高于基于症状和医生评估的姑息预后评分或姑息治疗研究模型。

结论

我们基于客观变量开发了预测晚期癌症患者生存率的高度准确的预后指数,这可能有助于临终管理。FP 建模方法在未来的研究中可能有希望开发其他预后模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验