Barnum Howard, Lee Ciarán M, Selby John H
1Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark.
2Department of Physics and Astronomy, University of New Mexico, Albuquerque, USA.
Found Phys. 2018;48(8):954-981. doi: 10.1007/s10701-018-0198-4. Epub 2018 Jul 12.
We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying four natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle model to be well-defined. The four principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), strong symmetry (existence of a rich set of nontrivial reversible transformations), and informationally consistent composition (roughly: the information capacity of a composite system is the sum of the capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least queries to solve a learning problem, because fewer queries provide no information about the solution, then the corresponding "no-information" lower bound in theories lying at the th level of Sorkin's hierarchy is . This lower bound leaves open the possibility that quantum oracles are less powerful than general probabilistic oracles, although it is not known whether the lower bound is achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource that might have power beyond that offered by quantum computation.
我们在广义概率理论的操作性定义框架内研究干涉与计算能力之间的联系。为了比较该框架内不同理论的计算能力,我们表明,任何满足四条自然物理原理的理论都拥有一个定义明确的预言机模型。实际上,我们证明了此类理论中预言机的一个子程序定理,这是预言机模型定义明确的必要条件。这四条原理是:因果律(大致来说,不存在来自未来的信号传递)、纯化(每个混合态都是一个更大系统的纯态的边缘态)、强对称性(存在一组丰富的非平凡可逆变换)以及信息一致组合(大致而言:复合系统的信息容量是其组成子系统容量之和)。索尔金定义了一系列可想象的干涉行为层次结构,其中层次结构中的顺序对应于在多缝实验中具有不可约相互作用的路径数量。基于我们的预言机模型,我们表明,如果一台经典计算机至少需要 次查询来解决一个学习问题,因为更少的查询无法提供关于解决方案的任何信息,那么在索尔金层次结构第 层的理论中,相应的“无信息”下限是 。这个下限留下了量子预言机可能比一般概率预言机能力更弱的可能性,尽管目前尚不清楚这个下限是否一般情况下都能达到。因此,对高阶干涉的探索不仅有基本原理上的动机,而且构成了对一种可能具有超越量子计算能力的计算资源的探索。